Submitted by: Atlantic Richfield Company La Palma, CA September 2013

Solids Repository Alternatives Evaluation and Preliminary Design Report

Rico-Argentine Mine Site – Rico Tunnels Operable Unit OU1 Rico, Colorado

Atlantic Richfield Company

Atlantic Richfield Company

4 Centerpointe Drive, 4-435 La Palma, CA 90623 Direct: (714) 228-6770 Fax: (714) 228-6749

E-mail: Anthony.Brown@bp.com

September 30, 2013

VIA EMAIL AND HAND DELIVERY

Mr. Steven Way On-Scene Coordinator Emergency Response Program (8EPR-SA) US EPA Region 8 1595 Wynkoop Street Denver, CO 80202-1129

Subject: Solids Repository Alternatives Evaluation and Preliminary Design Report Rico-Argentine Mine Site – Rico Tunnels Operable Unit OU01 Rico, Colorado

Dear Mr. Way,

A digital file in PDF format of the Solids Repository Alternatives Evaluation and Preliminary Design Report Rico-Argentine Mine Site – Rico Tunnels Operable Unit OU01 Rico, Colorado, dated September 30, 2013, is being submitted to you today via email. Three (3) hard copies of the report will also be hand-delivered to your office no later than October 1.

Atlantic Richfield Company (AR) is submitting this report responsive to requirements in Task C of the Removal Action Work Plan accompanying the Unilateral Administrative Order for Removal Action, Rico-Argentine Site, Dolores County, Colorado, U.S. EPA Region 8, Docket No. CERCLA-08-2011-0005.

If you have any questions, please feel free to contact me at (951) 265-4277.

Sincerely,

Anthony R. Brown Project Manager

Atlantic Richfield Company

anthrong R. Brown

cc: Ronald Halsey, Atlantic Richfield Company (via e-mail)

Terry Moore, Atlantic Richfield Company (via e-mail)

Sheila D'Cruz, Atlantic Richfield Company (via e-mail)

Reginald Ilao, Atlantic Richfield Company (via e-mail and hardcopy)

Jan Christner, Weston Solutions, Inc. (via e-mail)

William Duffy, Esq., Davis, Grahm & Stubbs, LLP (via e-mail)

Adam Cohen, Esq., Davis Graham & Stubbs, LLP (via e-mail)

Sandy Riese, EnSci, Inc. (via e-mail)

Tom Kreutz, AECOM Technical Services, Inc. (via e-mail)

Doug Yadon, AECOM Technical Services, Inc. (via e-mail)

Chris Sanchez, Anderson Engineering Company, Inc. (via e-mail)

Kristine Burgess, AEEC, LLC (via e-mail)

Marc Lombardi, AMEC Environment & Infrastructure, Inc. (via e-mail)

Spencer Archer, AMEC Environment & Infrastructure, Inc. (via e-mail)

Solids Repository Alternatives Evaluation and Preliminary Design Report

Rico-Argentine Mine Site – Rico Tunnels Operable Unit OU01 Rico, Colorado

Prepared By Elliott D. Drumright, PE Senior Geotechnical Engineer

Elliott & Drumpalt

Reviewed By Douglas M. Yadon, PE

Certifying Engineer

Released By Thomas M. Kreutz, PE

Project Manager

Contents

1.0	Introd	Introduction1-1			
	1.1	Purpose	1-1		
	1.2	Siting - General	1-2 1-2		
2.0	Field Investigations and Laboratory Testing				
	2.1	Geologic Mapping	2-1 2-1		
	2.2	Geotechnical Investigations 2.2.1 Drilling 2.2.2 Monitoring Wells 2.2.3 Test Pits 2.2.4 Cone Penetrometer Soundings 2.2.5 Geophysics	2-3 2-4 2-5 2-5		
	2.3	Field Exploration Results	2-6 2-9		
	2.4	Laboratory Testing	2-13		
3.0	Altern	natives Evaluation	3-1		
	3.1 Repository Contents and Capacity		3-1		
	3.2	3.2 Siting Criteria and Alternative Locations			
	3.3	South Stacked Repository (SSR-A)	3-3		
	3.4	Pond 13 Area	3-4		
	3.5	North Stacked Repository (NSR)	3-4		
	3.6	Recommended Repository Alternative	3-5		
4.0	Preliminary Design4-1				
	4.1	Capacity / Phased Build-Out	4-1		

6.0	Refer	ences	6-1	
	5.3	Solids Repository Construction and Initial Solids Placement	5-2	
	5.2	Design Documentation	5-2	
	5.1	Certificate of Designation	5-1	
5.0	Permi	itting Process and Schedule	5-1	
	4.7	Drying Facility	4-3	
	4.6	Run-on/Run-off and Infiltration	4-3	
		4.5.2 Conveyance		
	4.5	Leachate Control4.5.1 Cell Drainage		
		4.4.2 Stacked Solids		
		4.4.1 Starter Dike	4-2	
	4.4	Slope Stability		
		4.3.1 Bearing Capacity4.3.2 Settlement		
	4.3	Bearing Capacity and Settlement		
	4.2	Depth to Groundwater		

List of Appendices

Appendix A Geotechnical Investigation Logs

Appendix B IDF Solids - Laboratory Results

Appendix C Stability Analysis Results

List of Tables

Table 1 Laboratory Test Data Table 2 Embankment Fill - Direct Shear Test Results Table 3A IDF Solids - Specific Gravity and Atterberg Limits Table 3B IDF Solids - Moisture Content and Dry Unit Weight Table 3C IDF Solids – Undrained Shear Strength Table 3D IDF Solids - Hydraulic Conductivity Table 3E IDF Solids - Consolidation/Swell Data Table 3F IDF Solids - Triaxial Data Table 4 **Groundwater Monitoring Well Data**

List of Figures

Figure 1	Site Location
Figure 2	Geologic Mapping
Figure 3	Geotechnical Investigation Location Map
Figure 4a	Repository Alternative Locations with SSR-A Alt-A
Figure 4b	Repository Alternative Locations with SSR-A Alt-B
Figure 5	SSR-A-Phase 1 Alternative A Plan
Figure 6	SSR-A-Phase 1 Alternative A Section
Figure 7	SSR-A-Phase 1 Alternative B Plan

Figure 8 SSR-A-Phase 1 Alternative B Sections

Figure 9 Schedule

List of Acronyms

AECI Anderson Engineering Company, Inc.
AECOM AECOM Technical Services, Inc.

amsl above mean sea level
AR Atlantic Richfield Company

ASTM American Society for Testing and Materials

bgs below ground surface CD Certificate of Designation

CDPHE Colorado Department of Public Health and Environment

CERCLA Comprehensive Environmental Response Compensation and Liability Act

CPT Cone Penetrometer Test

cy cubic yard

DLUA Dolores County Land Use Application
ED&OP Engineering Design and Operations Plan

FS Factor of Safety

HMWMD Hazardous Materials and Waste Management Division

IDF Interim Drying Facility kips per square foot ksf North Stacked Repository **NSR** pcf pounds per cubic foot PDF Permanent Drying Facility **PDR** Preliminary Design Report pounds per square foot psf RAWP Removal Action Work Plan Refraction Microtremor ReMi

SLT St. Louis Tunnel

SPT Standard Penetration Test SSR South Stacked Repository

SWMMP Solid Waste and Materials Management Program

UAO Unilateral Administrative Order

USEPA United States Environmental Protection Agency

USFS United States Forest Service
USGS United States Geological Survey

1.0 Introduction

This Preliminary Design Report (PDR) has been prepared by AECOM Technical Services, Inc. (AECOM) on behalf of Atlantic Richfield Company (AR) and presents the preliminary design for a solids repository to be constructed at the St. Louis Ponds site near the Town of Rico in Dolores County, Colorado (Figure 1).

This Preliminary Design Report is organized as follows:

- Section 1.0 presents the purpose of the work in the context of the United States Environmental Protection Agency (USEPA) Unilateral Administrative Order (UAO) (EPA, 2011a) and accompanying Removal Action Work Plan, Rico-Argentine Mine Site – Rico Tunnels Operable Unit OU1, Rico, Colorado dated March 9, 2011 (RAWP) (USEPA, 2011a), plus general site conditions.
- Section 2.0 discusses geologic mapping completed for the overall St. Louis Ponds area, which includes
 each of the alternative repository locations; general subsurface geology (overburden and bedrock); the
 various geotechnical investigations completed over time in the alternative repository locations; and
 selected laboratory results applicable to the solids repository design.
- Section 3.0 presents the repository alternatives and a recommendation for the preferred alternative location.
- Section 4.0 includes a discussion of primary criteria for design of the solids repository at the
 recommended location, including capacity and phasing considerations, stormwater and leachate
 control, and geotechnical considerations (bearing capacity, slope stability and settlement).
- Section 5.0 includes a schedule and discussion of the repository design and permitting process.

1.1 Purpose

This PDR has been prepared pursuant to the USEPA UAO and in accordance with Task C of the RAWP. The Solids Repository Project specifically addresses Subtasks C1 and C2 of Task C, "Design and Construction of a Solids Repository".

The proposed repository site is located within the Ponds/St. Louis Adit area of the Rico – Argentine Mine Site, approximately 0.75 miles north of the northern boundary of the Town of Rico in Dolores County, Colorado. The site lies at the base of Telescope Mountain approximately 500 feet east of the Dolores River. This location is in the NW1/4 of the NW1/4 of Section 25, T40N, R11W within the United States Geological Survey (USGS) Rico 7.5-minute Topographic Quadrangle. The proposed repository will be located in an area of historic mining and mineral processing.

The project advances the overall site strategy by providing a repository for the existing and potential future mine water treatment solids (and potentially other mining or mineral processing by-products on site) while satisfying the following criteria:

- Adequate storage (airspace) for present and future solids and/or other by-products assuming a 50-year operating period.
- Safe location with regards to both access, and potential groundwater intrusion and contamination.
- Long-term geotechnical stability and erosion protection.

Refer to the following documents for specifics on the Solids Repository Project's applicability to the overall site strategy:

- Removal Action Work Plan, Rico-Argentine Mine Site Rico Tunnels Operable Unit OU0, Rico, Colorado; issued by EPA to Atlantic Richfield Company March 9, 2011 (EPA, 2011b).
- Initial Solids Removal Plan, Rico-Argentine Mine Site Rico Tunnels Operable Unit OU01, Rico, Colorado; submitted by Atlantic Richfield Company to EPA May 2, 2011 (AR, 2011).
- Pond 15 Solids Removal Work Plan, Rico-Argentine Mine Site Rico Tunnels Operable Unit OU01, Rico, Colorado; submitted by Atlantic Richfield Company to EPA, August 3, 2012 (AR, 2012).
- 2013 Solids Removal Work Plan, Rico-Argentine Mine Site Rico Tunnels Operable Unit OU01, Rico, Colorado; submitted by Atlantic Richfield Company to EPA May 13, 2013 (AR, 2013).

The solids repository will provide a permanent, on-site disposal area for: existing solids present in upper ponds (18, 15, 14, 13, 12 and 11); solids currently being stored in the Interim Drying Facility (IDF); and future solids generated from either a lime-addition treatment system or depleted matrix from operation of a wetlands treatment system, or other technology, whichever is selected for mine water treatment at the Site. At full build-out, the recommended repository location would provide additional and/or alternative capacity for disposal of other existing or potential future by-products including calcines up to the planned maximum capacity of 337,000 cubic yards (cy). As noted previously, this capacity would accommodate all existing and estimated future by-products (excluding waste rock) assuming wetlands treatment. Quantities are further discussed in Section 3.0. The repository will be designed, constructed and operated to comply with the requirements of the USEPA RAWP, Colorado Department of Public Health and Environment (CDPHE) Solid Waste and Materials Management Program (SWMMP)/Hazardous Materials and Waste Management Division (HMWMD) and Dolores County, including acquisition of a Certificate of Designation (CD).

Three primary alternative solids repository locations were evaluated for this report including: 1) South Stacked Repository (SSR); 2) Pond 13: and 3) North Stacked Repository (NSR).

1.2 Siting - General

1.2.1 Topography

The St. Louis Ponds and proposed repository site lie within the southwestern portion of the San Juan Mountains, in part on the lowermost, west-facing colluvial slope of CHC Hill (at the base of 12,208 foot Telescope Mountain) and in part on the adjacent east edge of the original Dolores River floodplain (see discussion of site geology in Section 2.1. The current surface grade at the repository sites evaluated ranges from approximately 8810 to 8910 feet above mean sea level (amsl). Relief within the alternative sites varies from approximately 20 to 80 feet. The existing ground ranges from essentially flat lying to sloping at a maximum of approximately 2H:1V, overall to the west. The lowest existing elevation is approximately 20 feet above the elevation of the Dolores River. The existing ground surface has been altered by grading (both excavation and filling) over most of the alternative site areas. The major grading is believed to have occurred as part of railroad construction in the late 19th century and active mining and mineral processing operations, mainly in the first half of the 20th century. Some additional grading is known to have occurred more recently, including grading to provide access roads for subsurface investigation activities in 2011-13.

1.2.2 Climate

Climate is characterized as semi-arid with long, cold snowy winters and short, moderately wet and warm summers. Monthly and annual climatic data has been compiled by the Colorado Climate Center at Colorado State University for Rico station 57017 from 1893 through 1993. The mean annual temperature is 38.7°F. The warmest months are June, July, and August with monthly mean temperatures of about 55°F. The coldest months are December, January and February with monthly mean temperatures of about 6.5°F.

Mean annual precipitation in the Rico area is about 27 inches. Most of this precipitation occurs as snowfall in the fall, winter and early spring, averaging about 173 inches per year. Average monthly precipitation

ranges between about 1.4 and 2 inches, with June the driest month and July and August the wettest months with almost 3 inches on average. The driest fall month is November with about 2 inches on average.

1.2.3 Access

The proposed repository site is accessed via approximately 0.75 mile of an existing unimproved gravel road extending east and north from Colorado State Highway 145. Highway 145 provides access from Telluride (27 road miles) and Montrose (86 road miles via US Highway 550 and then State Highway 62) to the north, and from Cortez (50 road miles) and Durango (92 road miles via US Highway 160) to the south.

2.0 Field Investigations and Laboratory Testing

Extensive field geologic and geotechnical investigations and geotechnical laboratory testing have been completed at the St. Louis Ponds site over the past several decades including investigations specific to the solids repository during the past two years. These investigations were performed for a variety of purposes and cover essentially all of the ground and conditions in the Ponds area. The results of these prior investigations that were specific to characterization of potential repository sites and/or that were performed for other reasons in potential site areas are discussed in detail in this Section 2.0. This information provides a key basis for the identification, characterization and evaluation of final candidate repository sites and recommendation of a preferred site as discussed in Section 3.0.

2.1 Geologic Mapping

In 2011, a site reconnaissance was performed to identify and map surficial materials (fill, colluvium, and landslide deposits), and major bedrock units that occur in the vicinity of the project site. After review of available, published geologic mapping and reports, a geologic reconnaissance was performed by walking the site and mapping key geologic features, exposures and unit contacts on available topographic maps. The results are provided on Figure 2. A description and interpretation of the mapped units is provided below.

2.1.1 Bedrock

Bedrock is largely covered in the valley bottom and on the hillslopes within the mapped area by unconsolidated surficial deposits. A detailed description of the bedrock geology of the area is presented in Geology and Ore Deposits of the Rico District, Colorado U.S. Geological Survey Professional Paper 723 (McKnight, 1974). Two principal bedrock types were delineated within the area: Precambria greenstone (map symbol g) and Paleozoic Hermosa Formation (map symbol Phl).

The oldest rocks in the area are Precambrian-age greenstones that are metamorphosed, mafic igneous rocks. These rocks occur in a narrow, east-west belt that crosses the river near the highway bridge in the southern portion of the mapped area. According to McKnight, this belt of rocks is actually an upthrusted fault block bounded by the Smelter fault on the south and the Last Chance Fault on the north. The fault block occurs at the central axis of a broad structural feature known as the Rico Dome.

The lower member of the Paleozoic Hermosa Formation crops out as a discontinuous ledge in the slope on the east side of the valley, including on CHC Hill. The Hermosa Formation is a thick sequence of interbedded sandstone, shale, conglomerate, limestone and dolomite that is the predominant geologic unit within the Rico district. The Hermosa Formation sequence is intruded by Tertiary age igneous rocks that were not mapped separately. The intrusives are predominantly a hornblende latite porphyry that occurs as a complex pattern of sills and dikes within the Hermosa formation.

2.1.2 Landslide Deposits

Landslide deposits occur in the hillslope on the east side of the river valley (northeast portion of the mapped area). The landslide deposits were classified based on the relative age of movement: active landslide deposits (map symbol Qlsa), and older landslide deposits (Qlso). Active or potentially active landslides (Qlsa) include slope failures that exhibit evidence of movement during last few years. Older landslide deposits are characterized by large, deep-seated landslide complexes that do not exhibit geomorphic features suggestive of recent movement (last several decades).

An older landslide deposit occurs in the northeast corner of the mapped area. This landslide deposit is part of a much larger landslide complex that covers approximately one square mile on CHC Hill. This landslide, herein referred to as the CHC Hill landslide, was mapped and described in USGS reports for the area (Walcott 1900, and McKnight 1974). Immediately north of the site, westward movement of the CHC Hill landslide controls the position of the Dolores River. In this area, the river is confined between the toe of the landslide on the east and the base of Sandstone Mountain on the west.

A smaller active landslide (Qlsa) also occurs in the northeastern corner of the mapped area. This landslide has developed within the larger, deeper CHC Hill landslide and represents local reactivation of the toe of the larger ancient slide mass. The active slide extends approximately 500 feet from head to toe and ranges from 200 to 300 feet in width. This landslide exhibits evidence of recent slump and debris slide activity. The slide has a relatively fresh main headwall scarp, and fresh secondary minor scarps; and several slump block features in the upper portion of the slide; and active debris slide features in the lower portion of the slide mass. All of these features suggest that the slide is active and poses a high risk to any facility situated at the toe of the slope. The mechanism that triggered reactivation of the slide is unknown, although grading and excavation evident at the toe of the slope in this area may have contributed to slope destabilization and reactivation of a portion of the slide mass.

A preliminary geologic reconnaissance was conducted in the central and upper portions of the CHC Hill landslide east of the mapped area. The purpose of the reconnaissance was to look for indication of recent movement of the larger landslide mass. Overall, the CHC Hill landslide deposit located immediately east and upslope of the mapped area did not exhibit evidence of movement in the past several decades. Most of this area is densely vegetated with mature aspen and fir trees. It is also traversed by primitive dirt roads that have existed since the early 1900s. There is also a relatively large waste rock pile associated with the historic Mountain Springs Mine situated in the lower central portion of the slide. If the CHC Hill landslide had experienced significant movement in the past few decades one would expect to see geomorphic evidence such as disrupted vegetation, roadways, and mine waste piles situated in the central portion of the slide mass. None of these types of features were observed during the reconnaissance suggesting that the larger CHC Hill landslide has not experienced significant movement in the past several decades or more. There are, however, localized active landslide deposits within the CHC Hill landslide area (like the one described above in the project area) where localized portions of the slide have been reactivated. These were observed locally in the upper portion of the CHC Hill landslide.

It is likely that the primary deep-seated movement in the CHC Hill landslide originally formed under the wetter climatic conditions in the late Pleistocene. These older landslide deposits can become reactivated as the result of natural and human surface disturbance (e.g., clearing vegetation, excavating the toe of slopes, modifying the drainage pattern, or rising groundwater levels).

2.1.3 Unconsolidated Surficial Deposits

Alluvium (map symbol Qal) (unconsolidated materials deposited by streams and rivers) occurs along the active Dolores River floodplain. Alluvium consists of predominantly coarse-grained deposits of silt, sand, pebbles, cobbles and boulders up to a couple feet in diameter. The rock clasts are of variable lithologies and generally subrounded to well rounded in shape.

Colluvium (map symbol Qc) forms by the downslope movement of soil and rock on moderate to steep slopes under the influence of gravity and sheet flow processes. The slopes that bound the east side of the St. Louis Ponds area are generally covered by extensive colluvial deposits that conceal the underlying bedrock. The thickness of these deposits tends to increase in the lower portion of the slope where the colluvium accumulates as a wedge of material resting on the valley floor. The colluvium is covered by patchy soil and vegetation. The colluvium consists of a mixture of coarse talus and material accumulated by slope wash, soil creep, and shallow, localized landslide processes.

Most of the valley floor area situated east of the Dolores River is covered by various types of fill material or native materials that have been disturbed by grading. Alterations in the surface geomorphology were used to identify areas covered by several feet or more of fill or disturbed by grading. The fill deposits were classified into three primary types based on visual observations: Undifferentiated fill (map symbol F), mine waste including calcines (map symbol MW), and riprap (map symbol RR). Riprap occurs along two separate and distinct dike structures that separate the Ponds area from the Dolores River. One of the dikes extends for approximately 1,100 feet and consists of angular boulder (map symbol RR1). The other dike extends only approximately 400 feet and only occurs in the northwest portion of the site. This dike consists of rounded boulders that appear to be derived locally from the river bed.

2.2 Geotechnical Investigations

Geologic and geotechnical conditions at the overall St. Louis Ponds site were investigated by geologic reconnaissance and preliminary mapping, field exploration (including monitoring wells, exploratory borings and test pits), and limited geotechnical laboratory testing on a number of occasions from 1981 to 2008. This included work performed by Dames and Moore (1981), Anderson Engineering Company, Inc. (AECI) (1996; 2008), Short Elliott Hendrickson Inc. (2001; 2004), and CDPHE (2003). Subsequent exploration (borings, monitoring wells, cone penetrometer test (CPT) probes, test pits and surface geophysical Refraction Microtremor [ReMi] lines) was completed by AECI/AECOM in 2011, 2012 and 2013 (in-progress). The locations of those exploration features proximate to the alternative repository locations are included in Figure 3. The field or final logs of the exploration features (older and recent) are included in alphabetical order by type (borings, probes, monitoring wells, test pits and ReMi lines) in Appendix A.

The pre-2011 investigations were performed for a variety of specific purposes, to varying standards, and details of the work performed are only partially known. The 2011-13 investigations were performed for the purpose of identifying subsurface conditions in the areas of potential solids repository locations and are discussed in detail herein. For purposes of design, where differing interpretations are possible utilizing the prior information as compared to the recent (2011-13) information, greater weight is generally given to the more recent results.

The objective of investigating the alternative repository locations was to characterize the repository subgrade, including acquiring information to evaluate foundation bearing capacity, settlement, depth to groundwater (relative to placement of a liner system), and the characteristics of potential borrow material from the base excavation.

2.2.1 Drilling

For the 2011 to 2013 investigations, boreholes were and are being drilled to target depths (or refusal if encountered shallower) specified in the Field Sampling Plan for Solids Repository, Permanent Drying Facility and Pond Flood Dike and Embankment Improvements (AR, 2011), Supplement to Field Sampling Plan for Solids Repository, Permanent Drying Facility, and Flood Dike and Pond Embankment Improvements, Rico-Argentine Mine Site – Rico Tunnels Operable Unit OU01, Rico, Colorado (AR, 2012), and 2013 Supplement to the Field Sampling Plan, Rico-Argentine Mine Site - Rico Tunnels, Operable Unit OU01, Rico, Colorado (AR, 2013).

Drilling was accomplished with conventional mud-rotary and sonic drilling equipment. Mud-rotary drilling utilizes temporary surface casing, hollow drilling rods connected to a rotary drilling bit, and a prepared bentonite/water drilling fluid to flush the drill cuttings and maintain borehole stability during drilling and sampling. If required, rock coring is then completed using a temporary casing extended to the surface of rock, and diamond-tipped core barrels, usually aided with clean water to cool the bit and flush rock cuttings.

Sonic drilling uses high-frequency, resonant energy to advance a core barrel and casing into subsurface soil units. The resonant energy is transferred down the drill string to the bit while the drill string is rotated,

distributing the energy and impact at the bit face. Sonic drilling is able to penetrate through large cobbles and boulders so refusal is not typically an issue. The sonic drilling method advances a casing as the borehole is drilled, and generally produces a continuous core sample. The sample is released into long, cylindrical casing bags, preserving the in-situ moisture content. Core loss with sonic drilling can occur if loose, unconsolidated soils are densified by the sonic energy, or if in situ soils are redistribured into voids.

Where access was convenient, wheel-tired drill rigs were used; where access was more difficult or bearing capacity a consideration, track-mounted equipment was used. Each rig type was generally capable of drilling deep and penetrating the rocky soils on the site, including the shallow cobbly alluvium and colluviums, although some refusal was encountered on deeper boulders or rock debris in the colluvium/alluvium. Both types of rigs were equipped to run the Standard Penetration Test (SPT), and push/recover Shelby tube samples of softer cohesive materials where encountered. Note, however, that it was not feasible to flood the sonic drill string with heavy drilling fluid to counteract otherwise unbalanced groundwater pressures at the drill bit that were encountered below the water table in several holes. This resulted in locally significant heave of fine-grained granular (non-plastic) soils into the core barrel such that reliable SPTs were not possible at those locations.

The borings were logged by a professional geotechnical engineer or geologist in general accordance with the guidelines in the *Engineering Geology Field Manual* (USBR, 2001). The logs included information on: drilling equipment used; difficult or problematic conditions; depth of changes in horizons or materials encountered, including color, gradation, soil classification, plasticity, density or moisture; and other features such as roots, debris, fissures, voids, staining, etc. If encountered, the depth to groundwater was noted. The sonic cores of overburden and the rock cores from mud-rotary/rock coring were photographed or videotaped, and representative samples collected of each soil horizon (except minor horizons generally thinner than about one foot thick) in sealed buckets or sample bags. Separate samples were collected and sealed in ziploc plastic bags to preserve in situ moisture content. Those samples were transported to the geotechnical laboratory for testing as described in Section 2.4. Shelby tube samples were capped and sealed with duct tape in the field, waxed and crated for transport to the laboratory.

In areas with near-surface fill, SPTs using a standard 2-inch outside diameter split spoon and SPT method per American Society for Testing and Materials (ASTM) D1568 were generally collected every 2.5 feet until alluvium was encountered, and then every 5 feet to the bottom of hole refusal, whichever was shallower. In other areas, SPTs were generally collected every five feet as conditions permitted.

Boreholes were completed as monitoring wells as described below or formally closed (abandoned) as noted on the boring logs. For piezometer completions, standard 2-inch Schedule 40 polyvinyl chloride standpipe wells were installed, utilizing 0.010 inch screened (factory-slotted) intervals as noted on the logs. Boreholes not completed with piezometers were abandoned with Halliburton Holeplug 3/8" bentonite pellets and hydrated.

2.2.2 Monitoring Wells

Monitoring wells were completed either within the proposed repository footprints, or, in the case of South Stacked Repository (SSR)-A and Pond 13 locations, near the periphery through nearby pond embankments, to further characterize groundwater conditions at the site. Certain of the pond embankment wells were logged, sampled and completed in pairs, with separate deep "D" and shallow "S" screened intervals. The deep wells were screened in the coarse alluvium to assess conditions in the alluvial aquifer. The shallow wells were bored approximately five feet away from the deep wells and were completed in either the dike fill or in a unit above the alluvium to assess the seepage characteristics of the dike or other shallow stratum as appropriate. Screened intervals (with additional buffer above and below) were backfilled with 20-40 Silica Sand and the remainder of the hole backfilled with Halliburton Holeplug 3/8" bentonite pellets and hydrated. Most monitoring wells were completed with concrete surface pads and locking well covers; others have a

riser pipe with locking cover. After installation, the wells were developed using portable pumping equipment to flush cuttings and sediment from the screened interval to the extent practical.

2.2.3 Test Pits

In 2011 and 2012, test pits were completed typically using tracked excavators, depending on test pit location and accessibility. For narrow pond embankments and flood dikes, or where access was otherwise limited, a "mini-excavator" was used. For test pits within the ponds themselves, including the alternative Pond 13 repository site, a "long-stick" excavator was utilized to provide extended reach. For all other areas, a conventional track-mounted excavator was used. Test pits in earlier vintages of exploration likely used track- or rubber-tire-mounted excavators or backhoes.

Test pits were excavated to refusal or maximum safe reach depth of the excavator, and logged by a professional geotechnical engineer in general accordance with the *Engineering Geology Field Manual* (USBR, 2001). Personnel did not enter the test pits, in compliance with OSHA safety regulations, but pit walls and spoil piles were photographed and horizon depths estimated with a survey rod and/or marked excavator arm. Representative bulk samples were collected of each soil horizon in five gallon buckets (except minor horizons generally thinner than one foot thick); moisture content samples were sealed separately in ziploc bags. Samples were transported to the geotechnical laboratory for testing as described in Section 2.4.

2.2.4 Cone Penetrometer Soundings

In 2011, a total of 17 CPT probes or soundings were completed in the overall St. Louis Ponds area to provide geotechnical information on the softer and fine-grained materials, including the calcines and finergrained alluvial units that underlie the ponds and pond embankments. Of these, 10 soundings are proximate to the alternative repository locations and are discussed herein. The CPT probes were completed by Gregg Drilling and Testing, Inc. using a Gregg 20-ton track mounted rig.

The CPT measures the total penetration resistance to pushing a tool with an instrumented conical tip into the soil. A friction sleeve on the rod string measures the friction on the side of the string and aids in estimating soil cohesive strength. The CPT cone tip employs a pressure transducer with a filter to gather pore water pressure data. This data are recorded in an electronic log by the operator.

CPT probes are typically suitable for loose to medium dense silts, soft to stiff clays and fine granular materials, and are typically unable to penetrate gravels, cobbles, boulders and other dense strata. To obtain results in the units of interest, most probe locations had to be pre-drilled through rockier units, or existing boreholes were reused to access the target depths. In cases where previously drilled boreholes were re-utilized such as CPT-ED-4, the probe was pushed through the bentonite-backfilled interval borehole to access a loose or softer, underlying stratum.

2.2.5 Geophysics

To supplement the test borings, subsurface conditions in the overall St. Louis Ponds area were and are continuing to be evaluated using the ReMi test. This test measures shear wave velocities of subsurface materials using ambient surface vibrations, with the results not adversely affected by the grain size of the soils. In the ReMi test, a series of 22 to 24 geophones were placed on the ground in arrays on a 10-foot spacing.

Of all locations tested, four array locations (spreads) evaluated in 2011 and one in 2012 were proximate to the alternative repository locations. Vibrations resulting from moving vehicles and other sources were employed to evaluate variations in subsurface strata. Data were recorded in 20 second sample intervals, with a two millisecond sampling rate per channel. Once collected, the data were checked for their fidelity.

To assure that a robust profile was being made, both individual recordings and multiple summed (stacked) recordings were evaluated.

A wave-field transformation data processing technique and an interactive Rayleigh-wave dispersion modeling tool were employed for the spectral analysis of surface waves. By analyzing segments of the geophysical line and integrating the results, two-dimensional profiles were developed along the line arrays. The two-dimensional profiles provide details of the shear wave velocities across the array length to depths on the order of 100 feet (about one-half the total length of the array). It should be noted that due to the nature of the analysis, it is not possible to interpret conditions at the extreme ends of the array. As a consequence, the results omit the outer 50 feet of each array.

The results of the ReMi testing are presented on individual profiles that indicate variations in shear wave velocities along and below the ground surface along the length of the array by means of various colors. Materials with higher shear wave velocities (very dense soil or bedrock) are indicated by red and yellow shades. Very stiff or dense soils are represented by green and light blue shades. Materials with lower shear wave velocities (medium dense and firm soils) are indicated by dark blue shades. Very loose or soft soils with shear wave velocities in the range of 500 to 600 feet per second are indicated by purple and pink shades. It has been found that materials having a shear wave velocity greater than about 650 feet per second are resistant to liquefaction, regardless of the magnitude of the earthquake.

The ReMi tests revealed conditions that were generally consistent with the soil test boring data. However, shear wave velocities interpreted by the ReMi tests were somewhat more uniform than what might be expected from the SPT values (N-values) in strata having a significant percentage of gravel. This is likely due to the amplification of N-values resulting from the presence of the coarsely grained materials. The results of each seismic line are presented in the corresponding subsections for each alternative repository location.

2.3 Field Exploration Results

Three primary alternative solids repository locations were evaluated for this report, including: 1) SSR; 2) Pond 13; and 3) NSR. These locations are shown on Figures 4A and 4B which include two alternatives for the SSR.

2.3.1 South Stacked Repository (SSR)

The SSR area contains several surficial features, including concrete foundations, IDF lime-treatment solids and underlying calcines in the Pond 16/17 area, and a wedge of fill and/or colluvium against the steep hillside to the east. The area is believed to potentially contain buried debris associated with buildings that appear on the lower slope of the hillside in historic photos of the area. Historic photos also indicate that portions of this area (generally the central, middle-elevation area) were utilized as a waste rock dump for the St. Louis Tunnel (SLT) excavation.

In 2011 and 2012, nine boreholes (SSR-1 through -5 and SSR-101 through -104), four monitoring wells (MW-5S/D, MW-101, MW-102 and MW-202), three test pits (TP2011-17 through -19), six CPT probes (CPT-1 through -6) and two ReMi lines (RM-2 and RM-4) were completed within or near the periphery of the full build-out footprint of this repository location as shown on Figure 3. Relevant portions of these explorations are discussed herein. Earlier explorations in proximity include borings B-1 through B-5, EB-1, EB-2 and EB-2D, DH-11 and DH-12R, monitoring wells GW-5 through GW-8 (some of which no longer exist due to construction of the IDF), test pits TP-13 through -22 and test pits TP B and TPC. The older exploration logs are included in Appendix A but; are not discussed in detail except for clarification of specific subsurface conditions.

Phase 1 Area

As discussed in Section 3.1, an initial (i.e., "Phase 1") portion of the SSR-A alternative repository site has been identified within which all existing lime or other -treatment solids on site could be placed. Later expansion of a repository at this site could be implemented to utilize some or all of the full build-out footprint available to accommodate future treatment solids or other on-site by-products if, and as needed based on the results of ongoing studies and selection and characterization of an overall site remedy.

Borings SSR-3, SSR-101 and SSR-102 were completed near the location of the proposed starter dike. The total depths drilled ranged from 100 to 169.2 feet below ground surface (bgs). Boring SSR-101 was completed as a groundwater monitoring well with screened interval set from 27.9 to 37.9 feet bgs. Boring SSR-102 was originally completed to 35 feet, then due to an out-of-plumb surface casing, was offset 5.5 feet south and completed as SSR-102A. Boring SSR-3 was completed through the remnant floor slab of a prior structure.

Borings SSR-101 and SSR-102 encountered 15.4 to 28.5 feet bgs of variable fill consisting of loose to dense sand, gravel and waste rock, with significant silt and clay fraction. Possible buried topsoil was identified in SSR-101 (28.5 to 31.5 feet bgs), and in SSR-102 (15.4 to 16.5 feet bgs).

Below the fill and buried topsoil, layered, extremely dense to medium dense silty gravels, sands and cobble/boulder layers were observed in SSR-101 (to 56 feet bgs), in SSR-102 (to 39 feet bgs) and in SSR-3 to 58 feet bgs). These strata were in turn underlain by dense to medium dense, silty sands (SP, SP-SM and SM) to 110.5 feet bgs (SSR-101), to 81 feet bgs (SSR-102) and were inter-layered with several well-graded gravel beds (GW) to the maximum depth of exploration (100 feet bgs) in SSR-3.

Below 100 feet in SSR-101, an atypical layer of high plasticity clay was observed from 110.5 to 115 feet bgs, underlain by dense sands and silts to 138.5 feet bgs, then by boulder-sized, weathered Hermosa sandstone to 160.5 feet bgs. Very dense clean gravel was present from 160.5 feet bgs to the top of weathered sandstone bedrock (163.4 feet bgs). Hard unfractured rock was noted by rotary wash cuttings (core not recovered) to the maximum depth of exploration (169.2 feet bgs).

Below 81 feet in SSR-102, medium dense to dense, layered gravel, sand and silt was observed, becoming very dense to extremely dense below 122 feet. Altered Hermosa sandstone was then encountered from 136.3 to 142.6 feet bgs, and intact sandstone bedrock was identified from 146.2 feet bgs to the maximum depth of exploration (150.0 feet bgs).

Borings SSR-1 and SSR-2 were completed at the toe and on the upper eastern hillside of the proposed SSR-A Phase 1 area. Gravelly lean clay with sand, silt, cobbles and boulders was observed from existing grade to 22 feet bgs in SSR-1, and from grade to 23 feet bgs in SSR-2. SPT N-values were typically 10 to 40 blows/feet, with a loose zone identified in SSR-2 at 15 feet bgs.

The upper strata in SSR-1 are underlain by inferred alluvial deposits of gravelly lean clay to 42 feet bgs, then by interlayered sands and gravels (clean and silty/clayey), variably medium dense to extremely dense, to the maximum depth of exploration (100 feet bgs). The upper strata in SSR-2 are underlain by alluvial clay with gravel to 35 feet bgs, then by interlayered, very dense to extremely dense, clean to silty sands and gravels, to the maximum depth of exploration (also 100 feet bgs).

Test pit exploration confirmed the presence of some buried debris in the proposed Phase 1 area, including some broken brick and part of a PVC pipe (TP2011-18 and -19), a steel pipe (TP-22), and a buried concrete foundation (TP-19 at 4.4 feet). In general, the shallow soils on the upper eastern hillside (TP2011-17, -18 and -19) appear to consist of fill and/or colluvium, which typically consist of dark brown clayey and sandy gravels / clayey gravels with cobbles and boulders (up to 24-inch size). The surficial soils of the middle

portion of this area consist of clayey sand and gravel fill with some waste rock and calcine lenses based on the logas of earlier TP19 through TP22.

ReMi Line RM-2 identified lower shear wave velocity materials in a range of 1000 to 1300 feet per second within the upper 25 to 30 feet of the ground surface, with higher variability with depth. The highest shear wave velocities were within the northern portion of the array at a depth beginning about 70 feet below grade. The shear wave velocity of this material is lower than expected for intact bedrock, which was confirmed at more than more than 140 feet below grade in SSR-101 and -102. No potentially liquefiable materials were detected in the overburden.

First groundwater is indicated in MW-101 at about 28 feet below surface, El. 8845 ft amsl, and at about 23 feet below surface El. 8839 feet amsl in MW-102. Boring SSR-1 encountered saturated strata at about 44 feet below surface El. 8863 feet amsl, and Boring SSR-2 had saturated strata at about 35 feet below surface El. 8850 feet amsl. These readings correspond to a groundwater elevation ranging from about 8815 to 8819 feet amsl.

Future Build-Out Area

The western portion of the SSR-A repository site (covered at present by the IDF consists of 3-4 feet of solids excavated from Pond 18 in 2011, over a variable thickness of calcines. These fill strata are in turn underlain by native alluvium, as discussed below. Borings SSR-4, SSR-5 and PDF-1 through -3 were completed from 31.5 to 100 feet bgs. Due to the soft nature of the solids, all but PDF-2 were completed through the short dikes that separate the various cells of the IDF. For these particular borings, the nomenclature IDF and PDF (Permanent Drying Facility) refer to the same general area at the St. Louis Ponds.

Borings SSR-4 and -5 encountered 4 feet of IDF dike fill at the surface, followed by loose to medium dense, sand and silt-sized calcines to 25 feet bgs (SSR-4), or by waste rock over sand and gravel fill (4-8 feet), underlain by calcine fill (8 to 25.5 feet) in SSR-5. Below the calcines, medium dense to extremely dense, clean and silty sand and gravel alluvium with cobbles was identified in SSR-4 to the depth of exploration (60 feet bgs). In SSR-5, a layer of extremely dense colluvium or waste rock was located below the calcine fill, followed by clean and silty, sand and gravel alluvium to the maximum depth of exploration (61.5 feet bgs).

Borings PDF-1 through -3 encountered 1.5 to 3.5 feet of waste rock or IDF embankment fill, followed by calcines to 22.5 to 27 feet bgs (an additional layer of clayey gravel fill was located below the embankment from 3.5 to 7.5 feet in PDF-3). Below the calcine fill, borings PDF-1 and -2 encountered clean to silty, sand and gravel alluvium with some cobbles, to the maximum depth of exploration (100 feet bgs in PDF-1 and 31.5 feet bgs in PDF-2). In PDF-3, the calcine fill is underlain by loose to medium dense, organic silty sand alluvium (possible remnant of buried overbank deposits within a river meander) from 23 feet to the maximum depth of exploration (31.5 feet bgs).

Probes CPT-1 through CPT-6 completed in the former Pond 16/17 area (present-day IDF), identified materials interpreted as thinly-layered sandy silts, clayey silts and silty sands to refusal depths of 18 to 29 feet bgs. These are likely the calcines (typically sand- and silt-sized fill materials).

Earlier test pits in the future build-out area (TP2004 F, G, H and I - completed before the IDF was constructed), identified 0.5 to 4 feet of surficial granular fill, over calcine fill to the maximum depth explored (12 feet bgs at that time).

ReMi Line RM-4 at the downstream (west toe) of the future build-out area of SSR-A suggests loose to very loose strata within about 30 feet of the ground surface. The shear wave velocities were as low as about 500 feet per second, which suggests that some of these soils have some potential for liquefaction depending on the characteristics of the design earthquake event for the site still under development. With greater depth,

soil strata were interpreted to be medium dense to very dense. Based on shear wave velocity, denser strata were detected at about 70 to 80 feet bgs within the central to northern portion of the array.

In 2001, first groundwater was indicated in SSR-5 at 15.5 feet below grade, and in PDF-1, -2 and -3 at 14.5, 18 and 14 feet bgs. Based on the surface grades at those locations, the readings correspond to a groundwater El. 8817 to 8821 feet amsl.

2.3.2 Pond 13

Interior

Most of the Pond 13 interior contains recent solids from dredging of Pond 15 (2012) and Ponds 11, 12 and 14 (2013 – in-progress), older solids (approximately 1.5 feet thick from pre-2000) and underlying calcines, all as fill above the native alluvium. Historic aerial photos indicate that portions of this area were used for calcines deposition.

In 2011 and 2012, eight boreholes (P13-101 through -103 and ED-4, -102, -103 and -108), three nested monitoring wells (MW-1S/D, -4S/D and -6S/D), four test pits (TP2011-01, -02, -04 and -08), and one ReMi line (RM-5) were completed within or near the periphery to this repository location as shown on Figure 3. These explorations are discussed herein. Earlier explorations in proximity include Borings DH-3, DH-3R and DH-4 and test pits TP-5 and TP-8. The older exploration logs are included in Appendix A but are not discussed in detail except for clarification of specific foundation conditions.

The 2012 dredging activity required that an intermediate dike (causeway) be built to separate Pond 13 into two cells to settle solids and decant water, respectively, from the dredging operations. Borings P13-101, P13-102 and P13-103 were completed through the new intermediate dike; Borings P13-102 and P13-103 were completed at the perimeter of Pond 13.

Boring P13-101 encountered 3.5 feet of granular causeway fill at the surface, followed by soft oxy-hydroxide lime-treatment solids and then calcine fill to 5 feet bgs. The fill is underlain by saturated, soft or loose organic silts and organic silty sands (likely former river overbank deposits) to 14.1 feet bgs. Below the organic deposits, poorly graded sand, gravel and cobble alluvium with occasional boulders was encountered to 35 feet bgs, followed by medium dense, sand alluvium with modest amounts of fine to medium gravel and minor to negligible amounts of silt (SP-SM and SM) to 80 feet bgs. From 80 feet bgs to the inferred top of weathered bedrock (126.5 feet bgs), further sand alluvium was observed in a dense to extremely dense condition, with increasing gravel below 120 feet bgs.

From 126.5 feet bgs to the maximum depth of exploration (143 feet bgs), Hermosa formation bedrock was encountered. The rock is weathered from 126.5 to 128.6 feet bgs, and is logged as greenish-gray, medium to fine grained and massive. Fractured zones were identified from 137.3 to 138 feet bgs and from 141.8 to 143 feet bgs (with drilling fluid loss).

In Borings P13-102 and P13-103, medium dense sand and gravel fill was encountered to 4.5 to 7 feet bgs, followed by soft silt sediment or oxy-hydroxide solids over calcine fill to 10 to 15.5 feet bgs. Further sand and gravel fill was observed below the calcines in P13-102 to 13.6 feet bgs. Unlike P13-101, the organic river overbank sediments were not observed, as the calcines were underlain by interlayered, mostly medium dense and occasionally loose sand and gravel (mostly SP, SW and GW) to 53 feet in P13-102 and to the maximum depth of exploration in P13-103 (51.5 feet bgs).

In P13-102, deeper alluvium consisted of medium dense, clean and slightly silty sands (SP and SP-SM) to 100 feet bgs, and dense to medium dense, silty and clayey sands to a rubble zone or inferred top of weathered bedrock at 119 feet bgs. An attempt was made to core the rock from 122 to 127 feet bgs (maximum depth of exploration), but no core was recovered (wash cuttings only).

Perimeter Embankments

In 2011, Boring ED-4 was completed in the west or downstream embankment of Pond 13, as one of six borings completed in the flood dike and pond embankments to support evaluations of foundation and slope stability, seepage conditions and piping potential. At that location, the dike fill (grade to 14 feet bgs) was typically granular in nature, consisting of varying percentages of sand, gravel and cobbles, with silt and clay, and medium dense to very dense by SPT test value. A thin layer of calcines was observed at the base of the embankment at 14 feet bgs. Below the embankment fill, the native alluvium consists of medium dense to dense, silty sand and gravel alluvium (14 to 23 feet bgs) over loose, fine to medium sand alluvium to the maximum depth of exploration (31.5 feet bgs).

In 2012, nine borings were completed through the east-west trending embankments of the upper ponds to fill data gaps related to: 1) historical voids or deleterious fill zones noted in prior borings; and 2) to explore deeper, loose sand alluvium below the pond system (for liquefaction and seismic stability evaluations). Relative to Pond 13, Boring ED-102 (north embankment) and ED-103 and -108 (south embankment) were advanced, with no obvious voids detected.

Boring ED-102 encountered variable silty and clayey sand and gravel fill interlayered with waste rock fill, in a dense to loose condition to 18.1 feet bgs, followed by organic silt over partly organic silty clay (possible river overbank material) to 24.5 feet bgs. These materials were in turn underlain by dense to very dense sandy gravel alluvium with cobbles and boulders to the maximum depth explored (31.5 feet bgs).

Borings ED-103 and -108 encountered variably clean or silty/clayey sand and gravel fill to 13 feet (ED-103) and to 12.5 feet bgs (ED-108). The SPT N-values in the fill decrease with depth, in general, from dense/very dense to loose. Below the fill, native sandy gravel alluvium (medium dense to very dense) with variable silt, clay, cobble and boulder content was observed to the maximum depth of exploration (27.5 feet bgs). Boring ED-108 encountered organic silty clay (river overbank material) just below the embankment fill (12.5 to 17.5 feet bgs), followed by interlayered sand and gravel alluvium with variable silt, cobble and boulder content to the maximum depth of exploration (79 feet bgs). The gravelly zones were from 17.5 to 24 feet bgs, 50 to 60 feet bgs and 67 to 79 feet bgs. The upper gravelly alluvium from 17.5 to 24 feet bgs is medium dense to extremely dense; the intermediate sand alluvium is mostly loose to medium dense.

In 2011, test pits 2001-01 and -02 were excavated in the interior of Pond 13 (prior to dredge placement of solids from Pond 15 in 2012). These encountered 1.5 feet of settled solids over about 3.5 feet of calcines fill. Test pits 2011-04 and -08 were completed through the south and north dikes of Pond 13, respectively. These identified mixed sand and gravel embankment fill with varying amounts of silt, clay, waste rock, cobbles and boulders (up to 18-inch diameter) to the maximum depth explored (10.5 feet in TP2011-04), and to 17 feet in TP2011-08. Underlying silty sand alluvium was encountered from 17 feet to the maximum excavated depth (20 feet bgs) in TP2011-08.

ReMi Line RM-5 along the south perimeter embankment of Pond 13 detected relatively uniform results along the extent of the array. Beneath a near surface zone of material having a shear wave velocity in the range of 700 to 800 feet per second, a 10- to 15-foot thick stratum of loose soils was interpreted from the ReMi test. The shear wave velocity in this loose zone was found to range from about 500 to 600 feet per second. This suggests that some of these soils have some potential for liquefaction (again depending on the characteristics of the design earthquake still under development). Beneath the loose stratum, the shear wave velocities were found to gradually increase to about 1500 feet per second. No apparent bedrock was noted within 100 feet of the ground surface.

Monitoring well pairs MW-1S/D, MW-4S/D and MW-6S/D were completed to observe stratigraphy and water levels (shallow within the embankment fill, and deeper in the underlying alluvium) along the perimeter embankments of Pond 13. MW-1S/D (west bank) extended through clayey, sandy and cobbly gravel fill to 10.8 feet bgs, followed by a thin layer of organic silt (buried topsoil or river overbank material) to 11.3 feet

bgs, followed by clayey/silty, sandy gravel alluvium with cobbles to maximum depth (31.5 feet bgs). The deeper well was screened from 15 to 25 feet bgs; the shallow well was screened from 4 to 9 feet bgs. The water levels have varied from 8800 to 8805 feet amsl (rounded) since completion.

MW-4S/D (southeast bank) extended through clayey, sandy and cobbly gravel fill to 10.8 feet bgs, followed by a thin layer of organic silt (buried topsoil or river overbank material) to 19.5 feet bgs, followed by clayey/silty, sandy, gravel alluvium with cobbles to maximum depth (33.5 feet bgs). The deeper well was screened from 21 to 31 feet bgs; the shallow well was screened from 8 to 18 feet bgs. The water levels have varied from 8798 to 8800 feet amsl (rounded) since completion.

MW-6S/D (west bank) extended through waste rock fill over clayey, sandy and cobbly gravel fill to 17.5 feet bgs, followed by organic silt alluvium (river overbank material) to 20 feet bgs, followed by clayey/silty, sand alluvium with cobbles to 36.5 feet bgs, followed by clean sand and gravel alluvium to the maximum depth (41.5 feet bgs). The deeper well was screened from 30 to 40 feet bgs; the shallow well was screened from 17-27 feet bgs. The water levels have varied from 8806 to 8809 feet amsl (rounded) since completion.

Borings P13-102 and -103 were also completed as monitoring wells in the lower fill or upper portion of the native alluvium. Those water levels have varied from 8800 to 8801 feet amsl (rounded) since completion.

2.3.3 North Stacked Repository (NSR)

This area contains several features, including a landslide described in more detail in Section 2.1.2. Potential slip planes were identified in the logs, but no positively identifiable landslide failure surface or zone was noted. Also, the eastern part of this area is believed to contain the buried remains of a former acid production facility that was demolished and at least partially buried in-place. Undated photos illustrate demolition and indicate partial burial of large concrete foundations associated with the facility, and the exploration (described below) confirmed the presence of buried debris, including steel "I" beams, cables, concrete and other debris.

In 2011 and 2012, six boreholes (NSR-1 through -4 and ADF/R-1 and -2), six test pits (TP2011-10 and TP2011-12 through -16), three CPT probes (NSR-2, ADF/R-1 and -2), and three ReMi lines (RM-1, RM-6 and RM-101) were completed within or near the periphery to the full build-out area of this alternative repository location as shown on Figure 3. These explorations are discussed herein. Earlier explorations in proximity include monitoring wells GW-1 through GW-3, test pits TP2004-C and -D, and test pits APB-1 through APB-4. The older exploration logs are appended but are not discussed in detail except for clarification of specific foundation conditions.

Eastern Area

Borings NSR-1 and -2 encountered 5.5 to 8 feet bgs of silty gravel fill at the surface, followed by interlayered native clayey silt, silty and sandy clay, silty/clayey and clean gravel, and well to poorly sorted sand (with occasional cobbles and boulders) to the maximum depth of exploration (62 feet bgs in NSR-1 and 100 feet bgs in NSR-2). SPT values indicated the native strata are in general medium dense to extremely dense.

Boring NSR-3 was completed through variable silty and clayey gravel fill to 26 feet bgs, which included cobbles, boulders, demolition debris, metal, mine waste and calcines. Black sludge with a septic odor was noted at 13 feet bgs. Below the fill, interlayered alluvial sands and gravels (extremely dense to medium dense) with thin clay layers were observed to the termination depth of 60 feet bgs.

Boring NSR-4 was completed at the furthest uphill location and extended through possible landslide soil debris from grade to 29.5 feet bgs. These materials consist of silty gravel, clayey silt and silty clay layers, with numerous cobbles and subanglular to angular rock fragments (some up to boulder size). By SPT value, the debris varies from loose to extremely dense, as expected. Below the apparent landslide debris,

silty clay alluvium was encountered to 36 feet bgs, followed by layered, dense to extremely dense, clean to silty/clayey gravel with occasional sand layers, cobbles (rounded to subrounded to 70 feet bgs, then subangular below 80 feet bgs) and boulders. Dolomite bedrock was penetrated by sonic drilling from 90 feet bgs to the bottom of the boring at 100 feet bgs (no rock core recovered).

Test pits 2011-12, -13 and -14 extended to depths of 17 to 20 feet bgs. These pits encountered regraded colluvium and landslide soil debris (gravel, sand, silt and clay with cobbles and boulders). Man-made debris (wood, bricks, steel I-beams and cable) were noted in the fill. In TP2-011-13, the backhoe refused on an unidentified obstacle at 18 feet bgs (likely a buried foundation but not confirmed due to having reached the safe working depth of the excavator).

At the time of drilling, water levels were observed from 21.5 to 34 feet bgs, which corresponds to a water elevation of approximately 8824 to 8842 feet amsl.

ReMi Line RM-6 (completed between NSR-1 and NSR-3) indicates considerable variation in subsurface shear wave velocities. Most of the materials to a depth of 100 feet exhibited shear wave velocities of 1300 feet per second or greater. However, within the southern section of the line, a zone of lower shear wave velocity materials was detected beneath and above denser soils. The lowest shear wave velocity recorded in this anomalous stratum was approximately 600 feet per second. However, this zone is present nearly 80 feet below grade. In general, liquefaction is not thought to occur below a depth of about 75 feet. Apparent bedrock was detected at depths ranging from about 80 to 90 feet bgs.

Western Area

Two sonic borings (Alternate Drying Facility/Repository [ADF/R] Series), two test pits (TP2011-15 and -16) and two CPT probes (in the ADF/R boreholes) were completed in what has been identified herein as the Upper North Staging/Drying Facility (also known as the Alternate Drying Facility/Repository). This area is generally the western part of the NSR (at full build-out) so the exploration results are discussed as part of the NSR. This area is known to have contained a lined pond used as a heap leach facility. Following termination of the leach heap operations, the pond received a small amount of lime treatment solids, believed to have been transferred from Pond 18 in approximately the mid 1990s.

Borings ADF/R-1 and ADF/R-2 encountered 17 to 23.5 feet bgs of variable fill at the surface, followed by extremely dense, silty and sandy gravel alluvium to the maximum depth explored (30 to 31 feet bgs). The fill included a surface layer of silty sand, gravel and clay fill to 4.5 to 9 feet bgs, followed by interlayered sand, gravel, calcines, mine waste ore and wood debris. The aforementioned heap leach liner (synthetic liner material believed to be Hypalon or HDPE) was observed at 3 feet below grade in ADF/R-2.

CPT probes were attempted in the completed ADF/R boreholes, but reached refusal quickly in the coarse alluvium.

Test pit 2011-10 (southwest end of overall area), encountered variable fill over a synthetic liner at 9 feet bgs, in turn underlain by calcines to 14 feet bgs then by alluvium (sand, gravel and boulders infiltrated with calcines) to the maximum depth of 18 feet bgs. Test pits 2011-15 and -16 encountered surface fill over a synthetic liner at 2.5 to 4 feet bgs (covered with a thin layer of pond solids in TP2011-16), followed by clayey, sandy gravel fill with calcine lenses and boulders (up to 36-inch-diameter) to 16 to 20 feet.

The shear wave velocity profile interpreted along ReMi Line RM-1 was found to be relatively uniform, with shear wave velocities typically ranging from about 800 to 1300 feet per second within the upper 25 to 35 feet. Below this, values generally increased to a range of 1500 to 2000 feet per second. No potentially liquefiable materials were detected. No hard rock was interpreted to a depth of 100 feet along this array.

ReMi Line RM-101 was completed in 2012 in the flat area of the proposed Upper North Staging/Drying Facility / NSR. The results indicate approximately 50 to 70 feet of overburden soils in relatively dense condition, with shear wave velocities of about 1,200 to 1,500 feet per second. An indication of the Hermosa Formation bedrock was identified at 80 to more than 100 feet, with shear wave velocities of 2,000 to 2,400 feet per second. This is consistent with the dolomite bedrock identified in NSR-4 at 90 feet bgs.

At the time of exploration, groundwater was observed in ADF/R-1 at 21 feet (approximate El. 8823 feet amsl) and at 7 feet (approximate El. 8836 feet amsl) in ADF/R-2. The latter value may be influenced by perching of groundwater on the buried liner.

Older monitoring wells GW-1, -2 and -3 have recorded groundwater levels in the general elevation range of 8836 to 8843 feet amsl (GW-1), 8824 to 8829 feet amsl (GW-2) and 8822 to 8831 feet amsl (GW-3) since completion (October 2002 through May 2013).

2.4 Laboratory Testing

There was little geotechnical laboratory testing performed on samples from the pre-2011 investigations. Selected soil samples from the 2011-2013 soil borings, monitoring wells and test pits were sent to Western Technologies, Inc. in Durango, Colorado, for index testing (moisture content, grain size, Atterberg Limits and Standard Proctor), in general conformance with the applicable ASTM/AASHTO standards. The results of the laboratory testing completed to date on samples from the field investigations are discussed below and summarized in Table 1. Laboratory data sheets for these tests are available upon request. Note that more detailed results of shear strength testing of embankment fill are presented in Table 2 as discussed in Section 2.4.1 below.

Relatively undisturbed samples of drained solids from the bottom of Ponds 18 and 13 were collected using thin-wall Shelby tube sampling methods, then were sealed and shipped to AECOM's geotechnical laboratory in Vernon Hills, Illinois. The samples were tested for moisture content, specific gravity, unit weight, grain size, triaxial permeability, consolidation, laboratory vane shear and consolidated-undrained triaxial compression, in general conformance with the corresponding ASTM standards. The results of these tests are summarized in Tables 3A through 3F as discussed below. Laboratory data sheets for these tests are also available upon request.

Laboratory testing for 2013 is ongoing, and therefore, the laboratory results presented in this report are a subset of the full testing suite. Results of the ongoing testing will be submitted to EPA as part of the Final Engineering Design and Operations Plan (ED&OP).

2.4.1 Embankment Fill

To evaluate the shear strength of existing dike fill materials (which are also considered as typical of fill from processed, on-site colluvium), direct shear tests were completed on test pit samples recovered from the primary flood dike and pond embankments. Bulk samples of these materials were tested in a large shear box (12 by 12-inch in plan size) at the AECOM laboratory in Vernon Hills, Illinois. Although the shearbox could accommodate a maximum particle size of 1-inch, the minus 3/4-inch fraction was used, as this was the same portion of the overall samples used to complete the Standard Proctor compaction tests performed by Western Technologies. In general, the minus 3/4-inch fraction represented 75 to 85 percent of the overall sample gradation.

Individual direct shear samples were compacted to 85 and 95 percent of the associated maximum Standard Proctor dry unit weight, and near the optimum moisture content. These two compaction percentages were chosen to represent modest and high levels of compactive effort, respectively. Two data points were collected at medium and high effective normal stresses (700 and 2,000 pounds per square feet [psf])

compared to the present embankment heights, then a second series of tests was added at low normal stress (150 psf), to evaluate the shape of the failure envelope nearer to the origin.

Based on a two-point regression envelope for shear strength versus normal stress, the effective angle of internal friction (rounded) indicates a range of 37 to 40 degrees at 85 percent relative compaction, and 42 to 47 degrees at 95 percent relative compaction. Using three data points, the typical curvature of the failure envelope near the origin results in a higher effective angle of internal friction (38 to 41 degrees at 85 percent compaction; and 52 to 53 degrees at 95 percent compaction). The variation in effective angle of internal friction due to curvature of the failure envelope may be accounted for in design by taking the slope and intercept near the effective normal stress of interest.

Effective cohesion values reflect the presence of significant silt and clay fraction in the embankment fill. Using a two-point failure envelope, the results are significantly higher for 95 percent vs. 85 percent relative compaction (500 to 800 psf versus 160 to 410 psf). There is less variation for a three-point envelope (80 to 260 psf at 85 percent vs. 130 to 240 psf at 95 percent).

The results of the shear strength testing of representative embankment fill are summarized in Table 2. Given the angular nature of the coarse fraction, the full sample would be expected to have at least as high an effective angle of internal friction. The results presented here are thus conservative, provided that fill sources are reasonably well-graded.

2.4.2 Oxy-hydroxide Solids

Drained lime-treatment solids from the bottom of Pond 18 were excavated by backhoe and placed approximately 2 to 4 feet thick in the four cells of the IDF in early Fall 2011. Cell 1 includes solids placed directly on the exposed calcines subgrade; Cell 2 had an open-graded gravel blanket placed over the exposed calcines subgrade to promote drainage; Cell 3 included a sand filter over the gravel drainage blanket; and Cell 4 was prepared as for Cell 3 except the placed solids were to be tilled from time to time during fair weather months to promote further drainage and evaporative drying. Tillage of the solids in Cell 4 was completed in summer 2013, but subsequent samples have not yet been tested.

Two to three samples were initially randomly collected approximately monthly (during non-winter months) since initial placement from three locations (A, B and C) in each cell, using thin-wall Shelby tube sampling methods augmented by a backhoe to hydraulically push and recover the tubes (due to access limitations for a drill rig). The tubes are sealed, packed and shipped to AECOM's geotechnical laboratory in Vernon Hills, Illinois. Round 1 sampling was completed in late October/November 2011, Rounds 2 through 8 were completed between April and late October 2012, and Round 9 in May 2013. Pertinent results are presented in Tables 3A through 3F and discussed herein.

Specific Gravity and Atterberg Limits

The drained solids have a specific gravity of 3.0, and classify as high-plasticity, inorganic silt (MH) per the Unified Soil Classification System. As summarized in Table 3A, liquid and plastic limits range from 67 to 83 percent and 62 to 79 percent, respectively. These inherent index properties are not expected to change over time, but are presented for comparison to natural soil materials.

Moisture Content and Dry Unit Weight

Per Table 3B, the moisture content of the drained solids ranged from 110 to 340 percent (with one outlier value at 430 percent) soon after placement in October 2011, and decreased in bandwidth to 85 to 220 percent by June 2013 (20 months later) (see Figure B-1 Appendix B). All cells showed significant decrease in moisture content of solids. No cell was clearly superior in terms of moisture content change, indicating that most of the decrease was from evaporative drying versus bottom drainage. It is noted, however, that

these are previously drained solids from Pond 18. Undrained solids are expected to have more significant bottom drainage whereby the base condition of the individual drying cells would have a greater impact.

The dry unit weight of the previously drained solids increased slightly from 2011 to 2012, varying from 13 to 43 pounds per cubic foot (pcf) (all cells) in October 2011, increasing to 21 to 50 pcf by September 2012, and 22 to 49 pcf by June 2013 (See Figure B-2 Appendix B). There are outlier values of 68 to 88 pcf in the October 2012 sampling event, but these may be from upper dessicated layers in certain cells. An ultimate maximum moist unit weight of 50 to 60 pcf for drained solids appears reasonable from review and extrapolation of the drying cell data collected to date. The dry unit weights are summarized together with moisture content in Table 3B.

Undrained Shear Strength

Undrained shear strengths from laboratory vane shear tests were measured starting with Round 2 sampling in April 2012. The measured shear strengths are summarized in Table 3C. There are no significant trends toward increasing peak or residual undrained shear strength for the period measured (April through September 2012) (See Figure B-3 Appendix B). Among the four cells, the peak shear strength has a wider variation (from approximately 110 to 590 psf), while the residual undrained shear strength varies over a narrower range (20 to 90 psf, with one value at 170 psf). From corresponding peak and residual tests of the same specimens, the sensitivity value (peak / residual undrained shear strength) varies from about 3 to 11, with an average of 5, which is relatively high in comparison to natural cohesive soils.

Hydraulic Conductivity

Based on tests as summarized in Table 3D, hydraulic conductivity (by triaxial permeameter) indicates a reduction of about one order of magnitude, from about 1 x 10⁻⁶ cm/sec to 1 x 10⁻⁷ cm/sec, between Fall 2011 and Fall 2012 (not including one outlier value on the order of 1 x10⁻⁴ cm/sec) (See Figure B-4 Appendix B). Hydraulic conductivity is known to vary by at least one order of magnitude between field and laboratory tests; therefore, the decrease in laboratory-measured hydraulic conductivity is not significant. The range of values is consistent with a silt-sized natural unconsolidated soil (moderately low but finite hydraulic conductivity).

Consolidation/Swell

The results from a total to date of 17 consolidation/swell tests are summarized on Table 3E. The initial void ratio (at setup) from these tests indicate initial void ratios of 5.3 to 10.5 in October 2011, and 5.7 in April 2013. This is due mostly to evaporative drying, with some minor self-weight consolidation in the drying cells. The maximum past pressure averages 1,400 psf (range of 900 to 1,900 psf). Final void ratios are in the range of 2.1 to 6.2. After loading to a maximum of 5,000 psf to simulate stacking of the material in a repository (40 feet of solids at a maximum of 100 psf moist unit weight), the Cc and Cr values for the drained solids range from 0.5 to 5.7 and 0.02 to 0.15, respectively. Both the Cc and Cr values are very high in comparison to typical natural soils, due to the extraordinarily high void ratios of the oxy-hydroxide solids.

Triaxial Shear Strength

The results of 13 multi-stage, consolidated-undrained triaxial shear tests are summarized in Table 3F. These test results indicate an average effective angle of internal friction of 29 degrees (range of 26 to 32 degrees), and an average effective cohesion of 160 psf (range of 50 to 300 psf, with little change from Fall 2011 to Spring 2013. For design of a solids repository, the relatively high effective angle of internal friction in the drained condition (long-term stability) must be tempered with the relatively high sensitivity of the solids in the undrained condition (soon after placement). In other words, the design and operation of the repository must accommodate drainage and reinforcement elements and delivery methods to survive initial placement to allow drained conditions to develop to the fullest extent possible over the long term.

3.0 Alternatives Evaluation

3.1 Repository Contents and Capacity

The materials to be disposed in the repository may include: 1) at least some portion of if not all of the existing lime-treatment solids on site; 2) other mining and/or mineral processing by-products including calcines and waste rock; and 3) future precipitated oxy-hydroxide solids or expended wetland treatment biomass (depending on the primary water treatment remedy selected). Estimates of the potential range of volume of these by-products based on studies to date are summarized as follows:

- Existing oxy-hydroxide precipitated solids (existing lime-treatment solids): 30,000 cy
- Existing pyrite roaster residuals (calcines): 220,000 cy
- Existing SLT tunnel muck (waste rock): 175,000 to 200,000 cy
- Future oxy-hydroxide precipitated solids (future solids): 2300 cy per year (based on an annual average SLT discharge of 1,100 gpm continuously buffered to a pH of 10 standard units in an openpond lime-addition treatment system); 115,000 cy for assumed 50-year project life
- Future depleted wetlands treatment matrix (wetlands matrix): 7,500 cy per 20-year replacement cycle; 19,000 cy for assumed 50-year project life

For purposes of sizing the repository, it is assumed that either lime addition or wetlands treatment, but not both technologies, will be selected as the primary remedy for the SLT discharge. It is also assumed unlikely that removal and on-site disposal of any significant quantity of waste rock will prove necessary as part of the overall remedy. Studies are ongoing as part of the development of the site conceptual model to assess the need for remedial action to address the calcines, including whether it is necessary to remove some of all of the calcines on site and store them in a repository.

It is further assumed that repository design and construction will be phased in order to meet the anticipated EPA RAWP schedule update requiring that mobilization for repository construction begin during June 2014. Phasing of repository construction has been informally agreed to by EPA, and formal concurrence is anticipated in the near term. The current understanding is that an initial Phase 1 repository is to be designed and constructed that is capable of holding at least the 30,000 cy of existing solids currently on site. Whether the Phase 1 repository is used to hold existing solids, and if so whether only some versus all of those solids would be placed, will be determined based on ongoing work for the site conceptual model and for final selection of the water treatment remedy. The Phase 1 repository will be designed to be able to contain all of the existing solids already on-site, or some portion of the existing solids plus some amount of future solids that may be generated, up to at least a capacity of 30,000 cy. This Phase 1 repository will be able to be expanded to hold a greater volume, and/or another of the alternative repository sites could be developed, as future decisions on the water treatment remedy and/or possible remedies for existing by-products are made.

Based on the assumptions and known conditions, the required ultimate build-out of on-site repository capacity is assumed to be a minimum of 145,000 cy if lime treatment is the selected primary water treatment method and the existing calcines and waste rock are not included. This volume would accommodate all existing solids on site (estimated as 30,000 cy) and the currently estimated future lime treatment solids generated over a 50-year project life (approximately 115,000 cy). Alternatively, the minimum ultimate design capacity to accommodate all existing on-site solids plus the wetlands matrix replacement over a 50-year project life (19,000 cy) would need to be approximately 49,000 cy. The maximum repository capacity

at ultimate build-out is based on the footprint area available for expansion at the candidate repository sites. This potential future capacity available at one or more of the sites would be available for on-site disposal of other by-products (calcines, waste rock, and/or solids from other potential treatment technologies).

3.2 Siting Criteria and Alternative Locations

The alternative locations for a solids repository were chosen based on the following criteria:

- Initial and full build-out footprint relative to capacity;
- Retention of existing relatively level ground in the area north of the active ponds and SLT portal area to the extent feasible for other uses;
- Short-term stability during construction and initial filling assumed with on-site oxy-hydroxide solids, and long-term stability at full build-out;
- Constructability, including potential for phasing expansion to full build-out in multiple steps;
- Maintenance or relocation of the existing United States Forest Service (USFS) road through the site;
- Land ownership and right-of-way issues;
- Proximity to the active ponds system; and
- Favorable interrelationship with other potential elements of the overall site remedy to the extent feasible.

Note that the criterion that a solid waste disposal facility under Colorado SWMMP/HMWMD guidelines not be located over or into an aquifer cannot be met due to the location of the St. Louis Ponds portion of the Rico Tunnels OU-01 of the Rico-Argentine Mine Site overlying and locally constructed into (e.g. Pond 13) the Dolores River overbank alluvial aquifer. However, as discussed later this criterion is mitigated by inclusion of a liner and leachate collection system in the repository design. This approach and mitigation was accepted by Dolores County and CDPHE in the siting and issuance of a CD for the Soil Lead Repository that is now constructed and operating at the Ponds site.

Based on these criteria, the geologic and geotechnical data summarized in Section 2.0, and the potential repository contents and associated volumes summarized above, three potential repository sites are presented; South Stacked Repository–A; North Stacked Repository; and Pond 13 Area. The locations of these three alternatives are illustrated on Figure 3 and discussed below in Sections 3.3 through 3.5.

A fourth site (South Stacked Repository-B) was determined to be infeasible and is no longer being considered. The development of the site would generate excess borrow material well beyond the immediate and foreseeable future needs of the site and would require at least temporary on-site material storage and possibly long-term on-site disposal. The excavation would generate approximately 550,000 cy of excess borrow resulting in a repository capacity of approximately 150,000 cy. Generating this much excess borrow does not efficiently utilize the limited available open space at the site, and managing or disposing the ultimate net excess material competes with potential on-site repository storage of future water treatment residuals and/or existing mining and mineral processing by-products.

A fifth site previously evaluated, the Upper North Area, has also been determined to be not feasible as a repository site. This site would only provide approximately 5,000 cy of capacity for existing or future solids and substantially less ultimate build-out volume for other potential by-product disposal than the other alternative sites. This site is, however, identified as a candidate location for a temporary by-products staging area, or a PDF for future solids should open-pond lime addition be selected as the preferred water treatment remedy.

3.3 South Stacked Repository (SSR-A)

Located at the toe of CHC Hill, this site was selected to be: 1) proximate (immediately east of) the upper ponds where existing solids are present and future solids would be generated if open-pond lime addition or wetlands are the selected water treatment remedy; 2) founded above the seasonal high water table; 3) sited as far from the Dolores River as technically feasible (out of the 100-year floodplain even in the unlikely event of a breach of the flood dike); and 4) to take advantage of a significant source of borrow material that would be generated from the base and back slope cuts, from which the required starter dike would be constructed to achieve the minimum required Phase 1 capacity of at least 30,000 cy.

The disadvantages of using the SSR-A area as a repository site include:

- USFS land is needed and the acquisition is a slow process (although only about 1 acre is needed for phase 1);
- Would need to encroach on existing IDF for capacity greater than Phase I, 30,000 cy; the current IDF is known to be underlain by significant amounts of buried calcines in the former Ponds 16/17 area;
- Must relocate existing haul and construction access road during Phase 1, and existing USFS access road at full build-out, to the west, along ponds 15 and 18; and
- Safety of construction and operation along avalanche chutes (extreme slopes) is a concern and requires added management.

3.3.1 Phase 1 - Alternate A

Depending on the layout of the eastern perimeter of SSR-A, a small but uniquely-situated portion of the repository footprint (0.51 acre) is located on USFS property that would require a land acquisition from the USFS (Figure 4A). An additional approximately 0.5 acre of USFS property would require temporary access during construction. The existing USFS access road can be maintained for this alternative, just beyond the toe of the Phase I starter dike. A branch from the USFS access road currently used to access the SLT area would be covered by Phase I of the repository. This alternative does not encroach onto the IDF, and the calcines underlying the IDF remain accessible during the Phase I build-out. The safety of construction and operation on and below the steep existing and final graded slopes would require thorough planning and implementation of short- and long-term safety measures. The Phase 1 capacity of Alternative A would meet the required 30,000 cubic yards and the total capacity for all additional phases to ultimate build-out (if implemented) would be 337,000 cubic yards.

3.3.2 Phase 1 - Alternate B

This alternative maintains approximately the same footprint as Alternate A, but would not encroach on USFS property (Figure 4B). The modification to the footprint would decrease the surplus borrow material for potential use in other aspects of the overall remedy by approximately 50 percent. The location is also above the seasonal high water table and out of the 100-year floodplain of the Dolores River even in the event of a breach of the flood dike. The USFS access road would, however, require relocation to beyond the toe of the repository starter dike, and the upper branch access road would still be covered by the repository (ie., requiring double handling of material). Relocation of the USFS access road would encroach onto the IDF and approximately 6,000 cubic yards of existing solids would have to be removed, stockpiled temporarily, and ultimately placed into the Phase 1 repository. Relocation of the USFS access road would also encroach onto existing calcines underlying the IDF. If the overall site remedy includes removal of calcines, approximately 25,000 cubic yards would have to be excavated and stockpiled pending final disposition. The Phase 1 capacity of Alternate B would meet the required 30,000 cubic yards; the total capacity for all additional phases to an ultimate build-out (if implemented) would be reduced to 271,000 cy from the 337,000 cy for ultimate buildout of Alternative A.

3.4 Pond 13 Area

In the current hydraulic configuration, Pond 13 is not an inundated pond but is off-line during normal flow conditions. This area was used historically for disposal of relatively modest volumes of calcines and later solids, and recently for at least temporary disposal of solids from Pond 15 in 2012, and from Ponds 11, 12 and 14 scheduled for 2013. The Pond 13 area can be expanded by a perimeter embankment raise to store at least the total of existing solids in the upper ponds (i.e., the 30,000 cy minimum required capacity), with a reserve capacity of approximately 11,000 cy at ultimate build-out.

As benefits, this location makes use of an existing inactive pond that already contains like by-products to some of those that might be disposed, and the location would be protected from the 100-year flood in the Dolores River by the flood dike and a raised perimeter pond embankment.

The disadvantages of using the Pond 13 area as a repository site include:

- Nearly all of the Pond 13 Area is USFS land that would require acquisition for permanent use as a repository;
- The total disposal volume at full build-out is relatively small since the area is surrounded by other ponds and the primary site/USFS access road;
- The existing solids (and possibly calcines) may require removal and temporary on-site storage to allow construction of an appropriate basal liner / leachate collection and solids drainage system;
- No borrow is available from subgrade excavation for use as general fill to construct the embankment raise required on much of the pond perimeter;
- The near-surface water table is likely at or above base elevation of this repository, which can cause
 uplift on a liner and require either elevating the liner with loss of repository capacity, or another
 engineered solution to control uplift pressures;
- Liners below the groundwater table are especially problematic if monitoring of leachate flow and quality is required, as minor flaws (e.g., pin hole leaks) can result in inward flow of groundwater; and
- Gravity discharge of effluent is not possible to Ponds 15 and 18, and may not be possible to Ponds 11,
 12, or 14; therefore, discharge may require siphoning or pumping.

3.5 North Stacked Repository (NSR)

The NSR is similar in maximum (full build-out) size and proximity to the toe of CHC Hill as SSR-A. This location north of the SLT adit utilizes relatively flat ground northeast of the St. Louis Ponds that is not currently under consideration for other facilities related to any of the potential site remedies under study. It is characterized by the same groundwater and Dolores River set-back advantages as SSR-A and will allow gravity discharge of leachate to the upper ponds (i.e., Pond 18) or to a wetlands treatment system in the Ponds area. The Phase 1 capacity would meet the required 30,000 cubic yards and the total capacity for all additional phases to ultimate build-out (if implemented) would be 311,000 cubic yards.

The disadvantages of using this site for a repository include:

- The position at the toe of CHC Hill overlies a mapped active landslide (part of much larger landslide complex) and would require significant additional geotechnical study, with the potential that mitigation to ensure long-term stability may require extraordinary measures;
- The NSR is traversed by an easement for access to private properties to the north and west on CHC
 Hill; also access to platted future off-site lots to the north may require the easement to be maintained,
 which could affect the footprint and/or operation and build-out of the repository;

- Existing foundations from prior large acid plant structures, tanks and ancillary facilities known and/or suspected to have been buried during demolition, may impact construction of the excavation subgrade and liner / leachate collection system;
- Some calcines may have been buried along with acid plant building and foundation remnants; these
 calcines, if present, may need to be removed and placed within the constructed lined repository; and
- Haul distances from future open-pond lime-treatment of oxy-hydroxide solids would be greater than for the other two candidate repository sites.

3.6 Recommended Repository Alternative

The recommended selection for a solids repository is the South Stacked Repository-A (SSR-A) site. This location is judged the most feasible with regard to: 1) initial and full build-out footprint relative to capacity; 2) retention of existing relatively level ground in the area north of the active ponds and SLT; 3) long-term stability at full build-out; 4) constructability, including potential for phasing in multiple steps; 5) maintenance of the existing USFS road through the site during Phase 1 and feasible minor relocation of a portion of the road during subsequent phases to full buildout; 6) avoidance of interference with the existing Realm Subdivision right-of-way in the north area of the overall St. Louis Ponds area; 7) proximity to the active ponds system and potential wetlands treatment area; 8) favorable interrelationship with most other potential elements of the overall site remedial solution; and 9) ability to accommodate the required Phase 1 volume of 30,000 cy and additional volume of treatment solids or other by-products if/as needed.

As noted in Section 3.1, the current property ownership boundaries, existing site facilities, and existing byproduct deposits within the initial (Phase 1) and potential full build-out footprint of SSR-A are somewhat complex, and would require careful sequencing and coordination of activities to meet known near-term and possible long-term disposal needs.

To implement Phase 1 at the SSR-A site in the Alternate A configuration would involve the acquisition of approximately one (1) acre of land from the USFS to cover the actual footprint overlap (about 0.5 acre) and construction access and buffer (estimated at about 0.5 acre). If this land acquisition is not feasible in time to initiate construction of Phase 1 in June, 2014, then the Phase 1 SSR-A footprint would have to be reconfigured and in part moved to the west (i.e., Alternate B).

Re-location of the Phase 1 SSR-A to construct the Alternative B footprint to the west would, however, encroach upon a portion of the existing IDF constructed in 2011, and would require temporary removal and stockpiling of the affected solids currently in the IDF (likely using the Upper North Area described previously) until the Phase 1 repository was ready to receive these solids for permanent disposal. In addition, any actions required to address the existing calcines underlying and adjacent to the affected area in the former Ponds 16/17 would have to be implemented prior to Phase 1 repository construction. If removal of the affected calcines beneath a revised Phase 1 SSR-A footprint proved necessary, it is assumed that the calcines would either be placed back in the original location following treatment or installation of a liner, or be stored in the Upper North Area until their final disposition was determined. Although not ideal, these measures are technically feasible and could be accomplished as part of the Phase 1 repository construction in time to meet the RAWP revised schedule deadline of October 31, 2014 for initiating disposal in the repository (assuming any required remedial actions for the calcines are known by fall 2013).

4.0 Preliminary Design

This Section 4.0 presents a basis for preliminary design of the recommended SSR-A repository. Both Alternates A and B are included, since negotiation of acquisition of the related USFS tract of land is still in progress and may not be able to be consummated by Summer 2014.

As previously discussed, existing oxy-hydroxide pond solids, calcines, and waste rock; future solids or depleted wetland treatment biomass (depending on the primary water treatment remedy selected); are currently candidate materials to be disposed of in the repository. The initial build-out capacity requires a minimum volume of 30,000 cubic yards to be below the crest of a starter dike that would completely contain all on-site oxy-hydroxide solids without requiring stacking. The full build-out will require a minimum of 49,000-145,000 cy of additional air space, depending on the selected primary water treatment technology.

4.1 Capacity / Phased Build-Out

SSR-A Alternates A and B (Figures 5 through 8) have Phase 1 capacities of 32,000 and 31,000 cy respectively, slightly exceeding the required storage criterion. At full build-out, Alternates A and B have maximum capacities of 337,000 and 271,000 cy, respectively, assuming stacking of materials on a currently envisioned maximum side slope of 3H:1V (Figures 4A and 4B).

After placement of existing solids in the Phase 1 cell, future phasing of the overall repository footprint will depend on the chosen mine water treatment technology (and/or if other existing mining or mineral processing by-products need to be disposed in the repository). If lime amendment or wetlands treatment are chosen, the volumes of future solids and/or depleted wetlands matrix will be generated at an estimated but as-yet not confirmed rate. If existing calcines or waste rock are required to be excavated and placed, those are immediately available as repository air-space allows. In either case, it is expected that an interim soil cover will be required to be placed over the waste materials at the end of any construction season to mitigate wind erosion and dispersal of the fines fraction of solids, depleted matrix or existing by-products.

4.2 Depth to Groundwater

Per Table 4, the maximum recorded groundwater elevation at monitoring wells MW-101 (8818.6 feet amsl), MW-102 (8817.9 feet amsl) and GW-7 (8825.1 feet amsl) are all several feet or more below the planned base elevation of the Phase 1 cell of SSR-A (8830 feet amsl). Considering the planned liner and leachate collection systems to be provided at the base of the repository, the lowest elevation of the SSR-A repository is considered to be sufficiently above the groundwater table to avoid interference with these systems. Regardless, long-term ambient groundwater monitoring is planned as part of the final design.

4.3 Bearing Capacity and Settlement

4.3.1 Bearing Capacity

The repository subgrade support condition can be treated as the equivalent of a mat foundation. For the granular soils typical of the foundation colluvium in the Phase I area, the maximum net allowable bearing pressure (in kips per square foot [ksf]) for a foundation settlement of 1 inch or less, is given by N/4, where N is the blow count from the SPT N-value. The general base elevation of the Phase 1 cell after mass excavation is assumed at El 8830. From Borings SSR-1, -2, -3, -101 and -102, the existing N-values within 50 feet below El. 8830 feet amsl varies from about 10 to more than 100 blows/feet. Therefore, the maximum net allowable bearing pressure (without foundation improvement) is 2.5 ksf (2,500 psf). This is approximately equal to the expected maximum applied pressure from 40 feet of stacked solids in the moist

condition (40 feet x 60 pcf or 2,400 psf). As the soil borings represent a sampling of what will be the bottom condition of the excavated Phase 1 cell, and given that certain borings (SSR-101 and -102) indicate fill materials below El 8830, the final design will incorporate recompaction of the base of the excavation prior to placing cushion and liner materials. Provision will also be included in the specifications for local removal, replacement and compaction of unsuitable subgrade material if determined necessary during construction.

The planned 20-foot-high Phase 1 starter dike will have an estimated bottom El. 8840 feet amsl. The results from borings SSR-3, -101 and -1-2 indicate average N-values of 10 to more than 100 blows/feet in the colluvium/alluvium within the upper 40 feet below that elevation, indicating a maximum net allowable bearing pressure of 2.5 ksf (2500 psf). This is approximately equal to the maximum initial applied pressure of 125 pcf x 20 feet, or 2,500 psf. As noted above for the main portion of the repository footprint, the presence of fill materials and some lower N-value materials below El. 8840 feet amsl indicate that local ground improvement of the excavated subgrade will be required in the footprint of the starter dike. This may involve compaction of the subgrade or removal of unsuitable material, replacement with structural fill, and compaction of the placed fill.

4.3.2 Settlement

As noted above, the maximum allowable bearing pressures for the granular colluvium/alluvium correspond to 1 inch or less of total foundation settlement, and would be proportionally less for lower maximum applied pressures or compacted foundation materials. The foundation settlement is expected to occur during construction in the case of the starter dike, and relatively soon after each primary lift of solids is placed in the cells over time. Self-weight settlement of the solids or other waste materials is considered elsewhere.

4.4 Slope Stability

4.4.1 Starter Dike

The side slopes of the starter dike are proposed at 2H:1V, with a crest width of 20 feet. The dike will be constructed of site-excavated colluvium/alluvium, processed to remove stones larger than 4 inches. The material will then be placed as an engineered fill, with appropriate moisture and compaction control. Based on the results of large direct shear tests presented in Section 2.4, an effective angle of internal friction and effective cohesion of 38 degrees and 100 psf, respectively, are considered reasonable. The resulting Factor of Safety (FS) of the starter dike and its foundation is greater than 1.5 which is acceptable for long-term loading (see stability analysis results in Appendix C). Seismic effects are considered minimal at this location given the nature of the subgrade and dike materials and the height and geometry of the dike, and are thus not considered further.

4.4.2 Stacked Solids

Depending on the phasing of the repository, at full build-out, the solids from a full-scale lime treatment system may be stacked on the order of 40 feet above the base of the cell. Based on the laboratory data of solids placed in the IDF (Section 2.4), the effective angle of internal friction and effective cohesion of drained solids is estimated at 29 degrees and 100 psf, respectively. However, the solids exhibit a very high void ratio, even after 1-D consolidation to 5,000 psf, and also show low undrained shear strength and relatively high sensitivity. Therefore, undrained strength is expected to control the slope stability behavior of the solids, at least until well into the future when long-term consolidation, cementation and aging effects may improve the undrained strengths.

Preliminary slope stability analysis of drained solids placed at an assumed 3H:1V grade, using average peak and residual strength values of 400 and 50 psf from the vane shear tests, indicate factors of safety below 1.0 (see stability analysis results in Appendix C). It is assumed that solids stacked above the crest of the starter dike will require reinforcement in the form of geogrid, as indicated in the preliminary slope stability analysis of (see results in Appendix C).

4.5 Leachate Control

A geosynthetic liner with supporting soil cushion sand layer will be placed on the graded base of the repository. The liner properties will be chosen to manage friction and sliding of the overlying soil and waste materials along with ease of installation (seaming requirements), and service life in the local climate.

4.5.1 Cell Drainage

During initial grading, the base of the Phase 1 repository will be graded to drain generally from east to west towards the west side of the starter dike. A leachate drainage/collection system, mirroring the slope of the cell bottom and liner, will be provided at the base of the repository, on top of the liner. If required for abrasion resistance, an underlying sand cushion will be placed under the drainage layer (directly against the top of the liner). The gradations of dissimilar drainage and cushion/filter layers will be chosen to meet applicable filter and permeability criteria. This system, in the form of graded gravel with collection piping (with cushion sand layer immediately on top of the liner if required), will collect gravity/consolidation drainage from the solids, and route that drainage to one of two manholes for conveyance to the treatment system.

4.5.2 Conveyance

Leachate from gravity drainage from the placed solids and other waste materials will drain by gravity to the drainage layer then to one of two manholes that will be raised as the cell is constructed. The outflow from these manholes will be conveyed by underground gravity pipeline to either Pond 15 or 18 (if lime treatment is chosen) or to a designated location within the wetlands system (for a wetlands treatment alternative). The cell bottom elevation of 8830 feet was chosen to allow a minimum pipe grade of 1/8th inch-per-foot (about 1%) from the bottom of the repository Phase 1 cell to discharge above the historical normal water elevation of the uppermost existing pond in the system (Pond 18 at 8823 feet amsl).

4.6 Run-on/Run-off and Infiltration

To minimize treatment of otherwise clean stormwater (rain and snowmelt), each phase of the repository will be graded at its perimeter and internally to eliminate run-on from outside the footprint of the repository, and encourage rapid runoff of direct precipitation (rain or snowmelt) on the repository surface to reduce potential infiltration of materials placed in the repository.

Infiltration of precipitation (and wind-induced erosion) will be reduced by placement of clean, intermediate and final soil cover, as governed by the sequencing of waste placement in the repository.

4.7 Drying Facility

It is intended to continue to utilize the existing IDF during initial operation of the Phase 1 repository, assuming that such use is compatible with other facilities and operations of the overall site remedy. If necessary, the subgrade of the existing IDF could be modified to incorporate a liner and leachate collection system similar in concept and operation to that underlying the Phase 1 repository. This system would be constructed after the existing solids in the IDF were placed in the Phase 1 repository. Note that if Alternate B is selected for the Phase 1 SSR-A repository that a portion of the existing IDF (currently estimated as about 40 percent) will be unavailable for use during the time the lower branch of the existing Forest Service access road is being relocated. The adequacy of the existing IDF footprint (or the available portion thereof under Alternate B) will be further assessed as decisions are made as to the materials, volumes and timing of disposal planned for the Phase 1 repository.

If lime-treatment is selected as the mine water treatment remedy at the site, then a PDF would be sited, designed and constructed. Under this scenario, it appears at this time that a PDF would be located in the Upper North Area as described previously in Section 3.2. This would maintain the maximum expansion

potential of the SSR-A repository and utilize a portion of the site not yet identified for an alternative long-term remedial action or facility. This would likely require utilizing the NSR repository site for staging construction materials and supplies that are currently present within the Upper North Area. The Upper North Area could also be used if the existing IDF proves not feasible or adequate during the life of the Phase 1 repository due to material type, volume and/or timing / sequencing issues.

If instead wetlands treatment (or another low volume treatment residuals process) is selected (and no existing calcines or waste rock need to be relocated to the repository), then it may be feasible to utilize a portion of the ultimate build-out footprint of SSR-A as a staging and drying area to the extent necessary. Alternatively, the Upper North Area could be used for these purposes.

5.0 Permitting Process and Schedule

The process to acquire a Certificate of Designation (CD) is discussed in this Section 5.0. The estimated project schedule is shown on Figure 9. The project schedule outlines the timeline for completion of the permitting process, design documentation for submittal to EPA, solids repository construction and initial solids placement into the repository.

5.1 Certificate of Designation

AR intends to obtain a CD for the solids repository through a Dolores County Land Use Application (DLUA). Construction activities for the permanent repository will commence following issuance of the CD by Dolores County. AR understands that EPA is not requiring that a permit be obtained as consistent with Comprehensive Environmental Response Compensation and Liability Act (CERCLA) response actions. However, the schedule associated with the design and permitting process is intended to accommodate the permit review and decision process for the repository to be completed before it is necessary to place pond-related solids.

A DLUA will be prepared for submittal to Dolores County and will include an ED&OP which will include details for construction of the repository subgrade, liner/leachate collection system, and placement of the existing precipitation solids removed from the upper ponds (some of which are temporarily staged in the IDF and Pond 13). The ED&OP will also address post-removal action of possible new treatment solids in the PDF and then into the solids repository following adequate dewatering ("drying") and consolidation. The ED&OP accompanying the DLUA will describe potential alternative placement methods, slope configurations, and stabilizing elements (e.g., external slope buttress; internal tensile reinforcement; etc.) that may be implemented if open-pond lime-treatment is the selected remedy at the site. Final design of the stacked portion of a repository to contain substantial amounts of future lime treatment oxy-hydroxide solids must await the testing and evaluation of dewatered and consolidated treatment solids during the first several years of full-scale operation of a ponds treatment system and PDF (or alternate lime-treatment facility such as a high-density sludge plant).

The following provides a general sequence of the DLUA and ED&OP development and review process leading up to the issuance of the CD:

- Preparation of DLUA and applicable accompanying documents
 - Prepare and submit DLUA/CD application package; Documents required: Dolores County
 Application for Land Development, Project Overview, County Performance Standards Compliance
 Review, State Statute Review Standards Identification, Solid Waste Disposal Sites and Facilities
 Application Checklist, ED&OP, Financial Assurance, Application Fee
 - Preparation of ED&OP; The ED&OP documents the design and operation of the treatment solids repository and must accompany the DLUA/CD application
 - Submittal of DLUA and accompanying documents to Dolores County
 - Dolores County Review and submittal of ED&OP to CDPHE
 - CDPHE review for application completeness. This review will be led by CDPHE with input from Dolores County and will assess the completeness of the information submitted, not technical issues or financial assurance.

- CDPHE comprehensive technical review and public hearing/comments. This review will be performed primarily by CDPHE and focus on the ED&OP.
- CDPHE recommendation to Dolores County. This is the formal recommendation by CDPHE to the County on acceptability of the DLUA/CD application, including technical matters and financial assurance.
- Dolores County issuance of CD.

5.2 Design Documentation

The design of the treatment solids repository will be documented in the ED&OP prepared to support the DLUA/CD application. This document will also serve as the final design document submittal to EPA for its approval of the solids repository.

5.3 Solids Repository Construction and Initial Solids Placement

Construction will proceed in the sequence and utilizing approved means and methods as identified in the ED&OP which will include construction drawings and technical specifications. The work will include the following primary construction activities: 1) construction of the subgrade improvements, run-on controls, liner system, and initial starter dike (i.e., berm/buttress), constituting the Phase 1 solids repository as described in Section 4.0; 2) reconfiguration and re-construction of the IDF (if lime-treatment is the selected final remedy for water treatment); and 3) placement of solids from the IDF, Pond 13, and possibly the remaining approximately 2 feet of solids remaining in the upper ponds into the prepared repository.

The activities of the selected construction contractor will be overseen by AR on a full-time, on-site basis. Depending on actual conditions encountered during the course of the work, appropriate adjustments in the means and methods of construction and/or initial placement of solids may be identified. Any such adjustments will be presented to the approving agencies for timely review and approval, and upon approval, implemented by the construction contractor.

In addition to observing the quality of the work, AR and its contractor will also track and record the depth and volume of solids removed from the interim drying facility, Pond 13 and if applicable the upper ponds, and the location and time of placement in the solids repository. Periodic surveys will be made of the solids deposited in the repository to document the amount and rate of ongoing consolidation.

6.0 References

- AR, 2011. *Initial Solids Removal Plan, Rico-Argentine Mine Site Rico Tunnels Operable Unit OU01, Rico, Colorado*; submitted by Atlantic Richfield Company to EPA May 2, 2011.
- AR, 2012. Pond 15 Solids Removal Work Plan, Rico-Argentine Mine Site Rico Tunnels Operable Unit OU01, Rico, Colorado; submitted by Atlantic Richfield Company to EPA, August 3, 2012.
- AR, 2013. 2013 Solids Removal Work Plan, Rico-Argentine Mine Site Rico Tunnels Operable Unit OU01, Rico, Colorado; submitted by Atlantic Richfield Company to EPA May 13, 2013.
- McKnight, Edwin T., 1974, Geology and Ore Deposits of the Rico District, Colorado, U.S. Geological Survey Professional Paper 723, 100 pp, 3 plates.
- USBR, 2001. U.S. Department of the Interior, Bureau of Reclamation. 1998. Engineering Geology Field Manual, Second Edition, Volume I (1998, reprinted 2001) and Volume II (2001).
- USEPA, 2011a. Unilateral Administrative Order for Removal Action (UAO), U.S. EPA Region 8, CERCLA Docket No. CERCLA-08 20011-0005, March 23.
- USEPA, 2011b. Removal Action Work Plan, Rico-Argentine Mine Site Rico Tunnels Operable Unit OU01, Rico, Colorado dated March 9, 2011.

Tables

Table 1 - Summary of 2011 Laboratory Index Test Results

				ASTM									AASHTO	
Sa	mple Locati	ion	ASTM D2216	D6938	(CP-31 ¹		ASTM [D4318	ASTM	D698	Hand Penet.	T85	USCS
Boring/ Test Pit	Depth (ft)	Туре	Natural Moisture Content (%)	Dry Unit Weight (pcf)	Gravel > #4 (%)	Sand (%)	Fines < #200 (%)	LL	PI	MDD (pcf)	OMC (%)	Unconfined Compressive Strength (psf)	Specific Gravity	Soil Classification
ADF/R-1	0-5	BULK	-	-	47	34	19	-	-	129.6	9.5	-	-	GM
ADF/R-1	10	SS	16.2	-	-	-	-	-	-	-	-	-	-	SW
ADF/R-1	13	SS	49.4	-	-	-	-	-	-	-	-	-	-	SW
ADF/R-1	17	SS	46.4	-	-	-	-	NP	NP	-	-	-	-	SM
ADF/R-1	22	SS	11.7	-	-	-	-	-	-	-	-	-	-	SM
ADF/R-2	2	SS	13.8	-	-	-	-	-	-	-	-	-	-	SM
ADF/R-2	6	SS	10.9	-	-	-	-	-	-	-	-	-	-	SM
ADF/R-2	12	SS	9	-	73	20	7	-	-	-	-	-	-	GM-GP*
B-2	9.5	-	-	-	37	41	22	-	-	-	-	-	-	-
B-4	9.5	-	-	-	41	37	22	-	-	-	-	-	-	-
ED-1	1	SS	7.8	-	44	33	23	-	-	-	-	-	-	GC
ED-1	4	SS	10.4	-	-	-	-	-	-	-	-	-	-	OL
ED-1	7.5	SS	-	-	-	-	-	-	-	-	-		-	GW-GM
ED-1	12	SS	13.6	-	-	-	-	NP	NP	-	-	-	-	SC
ED-1	20	SS	11.3	-	-	-	-	NP	NP	-	-	ı	-	SM
ED-1	26	SS	22.8	-	-	-	-	-	-	-	-	-	-	SM
ED-1	31	SS	22	-	-	-	-	-	-	-	-	-	-	SM
ED-1	36	SS	25.3	-	-	-	-	NP	NP	-	-		-	SM
ED-1	41	SS	24.4	-	-	-	-	-	-	-	-		-	SM
ED-1	46	SS	22.1	-	-	-	-	-	-	-	-		-	SM
ED-1	51	SS	24.3	-	-	-	-	-	-	-	-	ı	-	SM
ED-1	56	SS	23.8	-	-	-	-	-	-	-	-	ı	-	SM
ED-1	61	SS	24	-	-	-	-	NP	NP	-	-	ı	-	SM
ED-1	71	SS	not run	-	-	-	-	NP	NP	-	-	-	-	SM
ED-1	76	SS	26.9	-	-	-	-	-	-	-	-	-	-	SM
ED-1	91	SS	-	-	-	-	-	NP	NP	-	-	-	-	CL
ED-102	1-2.5	SS	12.1	-	-	-	-	-	-	-	-	-	-	-
ED-102	3-4.5	SS	11.3	-	-	-	-	-	-	-	-	-	-	-
ED-102	5-6.5	SS	14.7	-	-	-	-	-	-	-	-	-	-	-
ED-102	7.5-9	SS	20.7	-	57	31.5	11.5	-		-	-	-	-	-
ED-102	10-11.5	SS	29.3	-	2	46.9	51.1	-	-	-	-	-	-	-

Table 1 - Summary of 2011 Laboratory Index Test Results

				ASTM	_	·= - · 1							AASHTO	
Sa	mple Locati	on	ASTM D2216	D6938	(P-31 ¹		ASTM [24318	ASTM	D698	Hand Penet.	T85	USCS
Boring/ Test Pit	Depth (ft)	Туре	Natural Moisture Content (%)	Dry Unit Weight (pcf)	Gravel > #4 (%)	Sand (%)	Fines < #200 (%)	LL	PI	MDD (pcf)	OMC (%)	Unconfined Compressive Strength (psf)	Specific Gravity	Soil Classification
ED-102	12.5-14	SS	28.9	-	15	51.9	33.1	-	-	-	-	-	-	-
ED-102	15-16.5	SS	10.9	-	-	-	-	-	-	-	-	-	-	-
ED-102	17.5-19	SS	26.9	-	-	-	-	-	-	-	-	-	-	-
ED-102	22.5-24	SS	25.4	-	-	-	-	-	-	-	-	-	-	-
ED-102	25-26.5	SS	10	-	-	-	-	-	-	-	-	-	-	-
ED-102	30-31.5	SS	12.9	-	-	-	-	-	-	-	-	-	-	-
ED-103	1-3	SS	11.5	-	35	40.7	24.3	-	-	-	-	-	-	-
ED-103	5.6-7.6	SS	4.2	-	-	-	-	-	-	-	-	-	-	-
ED-103	8-10	SS	7.1	-	75	18.8	6.2	-	-	-	-	-	-	-
ED-103	10.5-12.5	SS	6.9	-	-	-	-	-	-	-	-	-	-	-
ED-103	13-15	SS	13.9	-	48	29.5	22.5	-	-	-	-	-	-	-
ED-103	15.5-17.5	SS	13.5	-	-	-	-	-	-	-	-	-	-	-
ED-103	18-20	SS	12.3	-	-	-	-	-	-	-	-		-	-
ED-103	20.5-22.5	SS	9.8	-	68	26.2	5.8	-	-	•	-	-	-	-
ED-103	25.5-27.5	SS	11.7	-	-	-	-	-	-	•	-	-	-	-
ED-108	0-2.5	SS	5.8	-	-	-	-	-	-	-	-	-	-	-
ED-108	2.5-3.5	SS	12.3	-	28	43.5	28.5	-	-	-	-	-	-	-
ED-108	5-6.5	SS	11.7	-	-	-	-	-	-	-	-		-	-
ED-108	7.5-9	SS	12.5	-	-	-	18.7	-	-	-	-	-	-	-
ED-108	10-11.5	SS	18.1	-	-	-	-	-	-	-	-	-	-	-
ED-108	12.5-14	SS	40.1	-	ı	-	-	=	-	Ī	-	-	-	•
ED-108	15-16.5	SS	39.3	-	ı	-	-	=	-	Ī	-	-	-	•
ED-108	17.5-19	SS	11.4	-	57	34.8	8.2	=	-	Ī	-	-	-	•
ED-108	20-21.5	SS	12.9	-	-	-	-	=	-	-	-	-	-	-
ED-108	22.5-23	SS	8.7	-	-	-	-	=	-	-	-	-	-	-
ED-108	25-26.5	SS	23.2	-	2	89.4	8.6	=	-	-	-	-	-	-
ED-108	30-31.5	SS	27.3	-	-	-	-	=	-	-	-	-	-	-
ED-108	32.5-34	SS	25.8	-	-	-	-	=	-	-	-	-	-	-
ED-108	35-36.5	SS	25.3	-	-	-	28	=	-	-	-	-	-	-
ED-108	37.5-39	SS	29.6	-	-	-	-	-	-	•	-	-	-	-
ED-108	40-41.5	SS	29.2	-	-	-	29.2	-	-	ı	-	-	-	-

Table 1 - Summary of 2011 Laboratory Index Test Results

				ASTM		1							AASHTO	
Sa	mple Locati	on	ASTM D2216	D6938	(P-31 ¹		ASTM [D4318	ASTM	D698	Hand Penet.	T85	USCS
Boring/ Test Pit	Depth (ft)	Туре	Natural Moisture Content (%)	Dry Unit Weight (pcf)	Gravel > #4 (%)	Sand (%)	Fines < #200 (%)	LL	PI	MDD (pcf)	OMC (%)	Unconfined Compressive Strength (psf)	Specific Gravity	Soil Classification
ED-108	42.5-44	SS	30.9	-	-	-	-	-	-	-	-	-	-	-
ED-108	45-46.5	SS	29.3	-	-	-	-	-	-	-	-	-	-	-
ED-108	47.5-49	SS	26.2	-	-	-	93.7	-	-	-	-	-	-	-
ED-108	50-51.5	SS	13.4	-	53	35.6	11.4	-	-	-	-	-	-	-
ED-108	52.4-54	SS	12.7	-	-	-	-	-	-	-	-	-	-	-
ED-108	57.5-59	SS	14.2	-	-	-	-	-	-	-	-	-	-	-
ED-108	62.5-64	SS	27.1	-	-	-	64.9	-	-	-	-	-	-	-
ED-108	67.5-69	SS	13.6	-	-	-	6.6	-	-	-	-	-	-	-
ED-108	72.5-74	SS	3.3	-	-	-	-	-	-	-	-	-	-	-
ED-108	77.5-79	SS	14.1	-	-	-	-	-	-	-	-	-	-	-
ED-108A	12.5-14.5	-	-	-	-	-	-	42	12	-	-	-	-	-
ED-108A	14.5-16.5	-	-	-	-	-	-	34	11	-	-	-	-	-
ED-2	1	SS	4.6	-	-	-	-	23	NP	-	-	-	-	GW
ED-2	0-4	BULK	-	-	54	25	21	-	-	138.5	7	-	-	GM*
ED-2	4-5	BULK	-	-	-	-	-	-	-	-	-	-	-	GW & SM-GM w/ org
ED-2	6	SS	12.9	-	58	27	15	23	NP	-	-	-	-	GM*
ED-2	11	SS	17	-	-	-	-	-	-	-	-	-	-	GM-GP
ED-2	7.5-12	BULK	-	-	-	-	-	-	-	-	-	-	-	GM-GP
ED-2	16	SS	15.6	-	-	-	-	-	-	-	-	-	-	GM-GP
ED-2	21	SS	19.1	-	12	36	52	NP	NP	-	-	-	-	SM & ML*
ED-4	1	SS	6.4	-	-	-	-	24	6	-	-	-	-	GC-GM
ED-4	0-5	BULK	-	-	35	37	28	-	-	131.4	9.7	-	-	SM*
ED-4	6	SS	9.7	-	-	-	-	-	-	-	-	-	-	GC-GM
ED-4	11	SS	11	-	-	-	-	-	-	-	-	-	-	GW
ED-4	16	SS	11	-	-	-	-	24	7	-	-	-	-	GC
ED-4	21	SS	12.9	-	-	-	-	-	-	-	-	-	-	GC
ED-4	26	SS	23.5	-	-	-	-	-	-	-	-	-	-	SM
MW-1D	1	SS	9.8	-	-	-	-	23	3	-	-	-	-	GC
MW-1D	0-5	BULK	-	-	48	34	18	-	-	134	7.2	-	-	GC
MW-1D	6	SS	17.4	-	-	-	-	-	-	-	-	-	-	GC
MW-1D	13	SS	19.5	-	-	-	-	22	5	-	-	-	-	GM-GC

Page 3 of 14 9/30/2013

Table 1 - Summary of 2011 Laboratory Index Test Results

					Ī									
				ASTM									AASHTO	
Sa	mple Locati	on	ASTM D2216	D6938	(CP-31 ¹		ASTM [D4318	ASTM	D698	Hand Penet.	T85	USCS
Boring/ Test Pit	Depth (ft)	Туре	Natural Moisture Content (%)	Dry Unit Weight (pcf)	Gravel > #4 (%)	Sand (%)	Fines < #200 (%)	LL	PI	MDD (pcf)	OMC (%)	Unconfined Compressive Strength (psf)	Specific Gravity	Soil Classification
MW-1D	12.5-18.5	BULK	-	-	54	33	13	-	-	-	-	-	-	GM-GC
MW-1D	21	SS	9.7	-	-	-	-	-	-	-	-	-	-	GM-GC
MW-1D	26	SS	7.8	-	-	-	-	-	-	-	-	-	-	GM-GC
MW-202	0-1.5	SONIC	19	-	57	30	13	NV	NP	-	-	-	-	-
MW-202	1.5-6	SONIC	20	-	35	40	25	30	21	128	9	-	2.65	-
MW-202	6-9	SONIC	14.1	-	-	-	-	-	-	-	-	-	-	-
MW-202	9-12	SONIC	18.2	-	-	-	-	-	-	-	-	-	-	-
MW-202	12-18	SONIC	24	-	20	70.7	9.3	30	21	125.1	10.4	-	2.65	-
MW-202	18-23	SONIC	13.1	-	20	70.7	9.3	30	21	125.1	10.4	-	2.65	-
MW-202	23-30	SONIC	36	-	20	70.7	9.3	30	21	125.1	10.4	-	2.65	-
MW-202	30-35.5	SONIC	9.7	-	-	-	-	-	-	-	-	-	-	-
MW-4D	1	SS	10.2	-	-	-	-	24	5	-	-	-	-	GC
MW-4D	0-5	BULK	-	-	-	-	-	-	-	-	-	-	-	GC & GW-GC
MW-4D	6	SS	8	-	-	-	-	-	-	-	-	-	-	GW-GC
MW-4D	11	SS	15.2	-	-	-	-	-	-	-	-	-	-	GW-GC
MW-4D	16	SS	10.7	-	-	-	-	28	7	-	-	-	-	GC
MW-4D	21	SS	19.8	-	-	-	_	_	-	-	-	-	-	GM-GC
MW-4D	20-25	BULK	-	-	-	-	-	-	-	-	-	-	-	GM-GC & GW
MW-4D	28	SS	23.2	-	-	-	-	-	-	-	-	-	-	GW
MW-5D	7	SS	28.2	-	-	-	-	-	-	-	-	-	-	SP
MW-5D	6-15	BULK	-	-	0	64	36	-	-	104.8	28.5	-	4.48	SC*
MW-5D	17	SS	60	-	-	-	-	NP	NP	-	-	-	-	SP-SM
MW-5D	15-20	BULK	-	-	0	30	70	-	-	95.7	35.1	-	4.59	ML*
MW-5D	22	SS	-	-	-	_	-	_	-	-	-	-	-	Org. ML-OL
MW-5D	26	SS	18.7	-	-	_	-	_	-	-	-	-	-	GW-GM
MW-5D	25-30	BULK	-	-	70	20	10	_	-	-	-	-	-	GW-GM*
MW-5D	31	SS	41	-	-	_	-	_	-	-	-	-	-	GW-GM
MW-5D	30-35	BULK	-	-	72	21	7	_	-	-	-	-	-	GW-GM
MW-6D	1	SS	7.8	-	-	-	-	-	-	-	-	-	-	GW-GM
MW-6D	0-3.5	BULK	-	-	55	28	17	-	-	136.1	8.2	-	-	GW-GM
MW-6D	5	SS	9.8	-	-	-	-	26	6	-	-	-	-	GC

Table 1 - Summary of 2011 Laboratory Index Test Results

			l I											
				ASTM									AASHTO	
Sa	mple Locati	on	ASTM D2216	D6938	(P-31 ¹	•	ASTM [D4318	ASTM	D698	Hand Penet.	T85	USCS
Boring/ Test Pit	Depth (ft)	Туре	Natural Moisture Content (%)	Dry Unit Weight (pcf)	Gravel > #4 (%)	Sand (%)	Fines < #200 (%)	LL	PI	MDD (pcf)	OMC (%)	Unconfined Compressive Strength (psf)	Specific Gravity	Soil Classification
MW-6D	3.5-7.5	BULK	-	-	47	34	19	-	-	127	12.1	-	-	GC
MW-6D	10	SS	9.1	-	-	-	_	-	-	-	-	-	-	GC
MW-6D	14	SS	6	-	-	-	_	-	-	-	-	-	-	GW-GM
MW-6D	18	SS	26.4	-	-	-	_	42	14	-	-	-	-	ML-OL
MW-6D	17.5-20	BULK	-	-	19	29	52	-	-	-	-	-	-	ML-OL
MW-6D	25	SS	18.4	-	-	-	_	22	4	-	-	-	-	SC
MW-6D	33	SS	24.1	-	-	-	_	-	-	-	-	-	-	GW
MW-6D	31.5-36.5	BULK	-	-	48	30	22	-	-	-	-	-	-	GM*
NSR-1	7	SS	15.4	-	22	44	34	-	-	-	-	-	-	SM*
NSR-1	13	SS	14.7	-	-	-	_	26	8	-	-	-	-	CL
NSR-1	17	SS	14.7	-	-	-	_	-	-	-	-	-	-	CL
NSR-1	26	SS	15.2	-	-	-	-	-	-	-	-	-	-	GM
NSR-1	31	SS	12.5	-	-	-	-	-	-	-	-	-	-	GC
NSR-1	34	SS	-	-	57	29	14	-	-	-	-	-	-	GM
NSR-1	43	SS	10	-	-	-	-	22	3	-	-	-	-	GC
NSR-2	0-5	BULK	-	-	39	41	20	-	-	136.6	6.4	-	-	SM*
NSR-2	7-10	BULK	-	-	-	-	-	28	NP	-	-	-	-	CL
NSR-2	10-12.5	BULK	23.7	-	-	-	-	-	-	-	-	-	-	GM
NSR-2	15-20	BULK	-	-	64	25	11	-	-	-	-	-	-	GW-GC*
NSR-2	30-35	BULK	15.8	-	-	-	-	23	7	-	-	-	-	GM
NSR-2	35-40	BULK	17	-	-	-	-	-	-	-	-	-	-	SP
NSR-2	55-56	BULK	28.6	-	-	-	-	-	-	-	-	-	-	SP
NSR-2	60-62	BULK	27.4	-	-	-	-	-	-	-	-	-	-	GM
NSR-2	67-70	BULK	26.3	-	-	-	-	-	-	-	-	•	-	SP
NSR-2	70-72	BULK	13	-	-	-	-	-	-	-	-	•	-	SP
NSR-2	78-80	BULK	21.8	-	-	-	-	-	-	-	-	•	-	SP
NSR-3	0-5	BULK	-	-	53	27	20	-	-	133.1	8.6	•	-	GP-GM*
NSR-3	5-10	BULK	14.8	-	-	-	-	32	12	-	-	-	-	GC
NSR-3	13-15	BULK	12.8	-	-		-	-	-	-	-	•	-	GC
NSR-3	15-18	BULK	9.3	-	-	-	-	-	-	-	-	-	-	GC
NSR-3	23-25	BULK	14.4	-	-	-	-	-	-	-	-	ı	-	GC

Table 1 - Summary of 2011 Laboratory Index Test Results

				ASTM		4							AASHTO	
Sa	mple Locati	on	ASTM D2216	D6938	(P-31 ¹		ASTM [D4318	ASTM	D698	Hand Penet.	T85	USCS
Boring/ Test Pit	Depth (ft)	Туре	Natural Moisture Content (%)	Dry Unit Weight (pcf)	Gravel > #4 (%)	Sand (%)	Fines < #200 (%)	LL	PI	MDD (pcf)	OMC (%)	Unconfined Compressive Strength (psf)	Specific Gravity	Soil Classification
NSR-3	34-37	BULK	18.9	-	-	-	-	-	-	-	-	-	-	SP
NSR-3	40-45	BULK	17.5	-	-	-	-	-	-	-	-	-	-	GM
NSR-3	47-50	BULK	12.1	-	-	-	-	-	-	-	-	-	-	GM
NSR-4	0-5	BULK	-	-	35	39	26	-	-	-	-	-	-	SM*
NSR-4	12	SS	15.5	-	-	-	-	-	-	-	-	-	-	GC
NSR-4	17	SS	-	-	51	30	19	-	-	-	-	-	-	GM*
NSR-4	27	SS	13.5	-	-	-	-	-	-	-	-		-	CL
NSR-4	31	SS	22.1	-	-	-	-	21	NP	-	-	-	-	ML*
NSR-4	41	SS	11.1	-	-	-	-	-	-	-	-	-	-	GC
NSR-4	47	SS	13.8	-	-	-	-	-	-	-	-	-	-	GM
NSR-4	59	SS	10	-	-	-	-	-	-	-	-		-	GC
NSR-4	70	SS	9.3	-	-	-	-	-	-	-	-		-	GC
NSR-4	75	SS	8.3	-	-	-	-	-	-	-	-		-	SW
P13-101	10-11.5	SS	55.8	-	4	21.6	74.4	-	-	-	-	-	-	-
P13-101	18.5-20	SS	11.7	-	45	42.9	12.1	-	-	-	-	-	-	-
P13-101	35-36.5	SS	13.6	-	15	73.1	11.9	-	-	-	-	-	-	-
P13-101	40.3-41.8	SS	16.1	-	-	-	-	-	-	-	-	-	-	-
P13-101	45-46.5	SS	14	-	-	-	-	-	-	-	-		-	-
P13-101	50-51.5	SS	12.6	-	-	-	-	-	-	-	-		-	-
P13-101	60-61.5	SS	16.7	-	-	-	-	-	-	-	-		-	-
P13-101	70-71.5	SS	25.8	-	0	82.8	17.2	-	-	-	-		-	-
P13-101	80-81.5	SS	22.9	-	-	-	-	-	-	-	-		-	-
P13-101	91.3-92.8	SS	22.1	-	-	-	-	-	-	-	-		-	-
P13-101	102-103.5	SS	23.2	-	0	80	20	=	-	-	-	-	-	-
P13-101	103-110	SONIC	22.9	-	-	-	20.9	=	-	-	-	-	-	-
P13-102	5-6.5	SS	6.1	-	-	-	-	=	-	-	-	-	-	-
P13-102	7.5-9	SS	316.1	-	-	-	-	NV	NP	-	-	-	-	-
P13-102	15-16.5	SS	12	-	-	-	-	-	-	-	-	-	-	-
P13-102	20-21.5	SS	13.8	-	-	-	-	=	-	-	-	-	-	-
P13-102	25-26.5	SS	20	-	28	64	8	-	-	•	-	-	-	-
P13-102	30-31.5	SS	18.9	-	-	-	-	-	-	-	-	-	-	-

Page 6 of 14 9/30/2013

Table 1 - Summary of 2011 Laboratory Index Test Results

9:	ımple Locati	on	ASTM D2216	ASTM D6938		CP-31 ¹		ASTM I	D/318	ASTM	DEOS	Hand Penet.	AASHTO T85	USCS
Boring/ Test Pit	Depth (ft)	Туре	Natural Moisture Content (%)	Dry Unit Weight (pcf)	Gravel > #4 (%)	Sand (%)	Fines < #200 (%)	LL	PI	MDD (pcf)	OMC (%)	Unconfined Compressive Strength (psf)	Specific Gravity	Soil Classification
P13-102	32.5-34	SS	18.6	-	-	-	17.4	-	-	-	-	-	-	-
P13-102	35-36.5	SS	17	-	31	59	10	-	-	-	-	-	-	-
P13-102	37.5-39	SS	15.5	-	-	-	_	-	-	-	-	-	-	-
P13-102	40-41.5	SS	19.3	-	-	-	_	-	-	-	-	-	-	-
P13-102	42.5-44	SS	14	-	-	-	9.3	-	-	-	-	-	-	-
P13-102	45.5-47	SS	23.1	-	-	-	_	-	-	-	-	-	-	-
P13-102	47.5-49	SS	14.4	-	51	37.7	11.3	-	-	-	-	-	-	-
P13-102	50-51.5	SS	17.1	-	-	-	41.6	-	-	-	-	-	-	-
P13-102	55-56.5	SS	16.5	-	-	-	_	-	-	-	-	-	-	-
P13-102	60-62	SS	17.5	-	-	-	12.6	-	-	-	-	-	-	-
P13-102	65-66.5	SS	18.3	-	-	-	-	-	-	-	-	-	-	-
P13-102	70-71.5	SS	15	-	-	-	14.9	-	-	-	-	-	-	-
P13-102	75-76.5	SS	19.9	-	-	-	_	-	-	-	-	-	-	-
P13-102	80-81.5	SS	22.2	-	12	80	8	NV	NP	-	-	-	-	-
P13-102	85-86.5	SS	23.5	-	-	-	_	-	-	-	-	-	-	-
P13-102	90-91.5	SS	23.5	-	-	-	8.5	-	-	-	-	-	-	-
P13-102	95-96.5	SS	25	-	-	-	-	-	-	-	-	-	-	-
P13-102	100-101.5	SS	16.2	-	30	63.2	6.8	-	-	-	-	-	-	-
P13-102	105-106.5	SS	14.5	-	-	-	_	-	-	-	-	-	-	-
P13-102	110-111.5	SS	18.1	-	-	-	9	-	-	-	-	-	-	-
P13-102	115-116.5	SS	18.5	-	-	-	-	-	-	-	-	-	-	-
P13-102	120-121.5	SS	1.8	-	-	-	0.4	-	-	-	-	-	-	-
P13-103	1-2.5	SS	17	-	-	-	-	-	-	-	-	1	-	-
P13-103	6-8.5	SS	178.5	-	-	-	-	-	-	-	-	•	-	-
P13-103	10.5-12	SS	11.6	-	69	24.3	6.7	-		-	-	•	-	-
P13-103	13.6-14	SS	15.7	-	-	-	-	-	-	-	-	-	-	-
P13-103	18.8-20.3	SS	10.6	-	-	-	-	-	-	-	-	-	-	-
P13-103	23.6-25	SS	8.6	-	-	-	-	-	-	-	-	-	-	-
P13-103	28.5-30	SS	15.7	-	16	69.4	14.6	-	-	-	-	-	-	-
P13-103	31-32.5	SS	13.2	-	-	-	-	-	-	-	-	-	-	-
P13-103	36-37.5	SS	14.4	-	-	-		-	-	-	-	-	-	-

Page 7 of 14 9/30/2013

Table 1 - Summary of 2011 Laboratory Index Test Results

				ASTM									AASHTO	
Sa	mple Locati	on	ASTM D2216	D6938	C	P-31 ¹		ASTM [04318	ASTM	D698	Hand Penet.	T85	uscs
Boring/ Test Pit	Depth (ft)	Туре	Natural Moisture Content (%)	Dry Unit Weight (pcf)	Gravel > #4 (%)	Sand (%)	Fines < #200 (%)	LL	PI	MDD (pcf)	OMC (%)	Unconfined Compressive Strength (psf)	Specific Gravity	Soil Classification
P13-103	41-42.5	SS	13.9	-	-	-	-	-	-	-	-	-	-	-
P13-103	46-47.5	SS	12.5	-	-	-	-	-	-	-	-	-	-	-
P13-103	50-51.5	SS	16.6	-	-	-	-	-	-	-	-	-	-	-
PDF-1	1	SS	8.5	•	57	31	12	-	-	-	-	•	-	GW-GM*
PDF-1	4	SS	15.5	•	0	72	28	NP	NP	-	-	•	-	SM
PDF-1	11	SS	22.3	ı	-	-	-	-	-	-	-	ı	-	SM
PDF-1	16	SS	216.7	•	0	57	43	-	-	-	-		-	SM
PDF-1	21	SS	46.5	•	-	-	-	-	-	-	-		-	SM
PDF-1	33	SS	10.9	•	65	26	9	-	-	-	-		-	GW-GM*
PDF-1	38	SS	29.1	•	-	-	-	-	-	-	-		-	SW
PDF-1	43	SS	15.5	•	-	-	-	-	-	-	-		-	SW
PDF-1	48	SS	23.7	ı	1	75	24	-	-	-	-	ı	-	SM*
PDF-2	2	SS	17.5	-	-	-	-	NP	NP	-	-	-	-	SM
PDF-2	2-5	BULK	-	-	0	75	25	-	-	-	-	-	-	SM
PDF-2	6	SS	20.4	-	-	-	-	-	-	-	-	-	-	SM
PDF-2	11	SS	29.9	-	-	-	-	-	-	-	-	-	-	SM
PDF-2	10-15	BULK	-	-	0	63	37	-	-	-	-	-	-	SM
PDF-2	17	SS	55.9	-	-	-	-	-	-	-	-	-	-	SM
PDF-2	21	SS	62.6	•	-	-	-	-	-	-	-		-	SM
PDF-2	20-25	BULK	-	•	4	51	45	-	-	-	-	•	-	SM
PDF-2	28	SS	41	ı	-	-	-	-	-	-	-	-	-	GW-GM
PDF-2	27-30	BULK	-	ı	66	18	16	-	-	-	-	ı	-	GM*
PDF-3	0-3.5	BULK	-	ı	34	51	15	-	-	131.7	7.8	-	-	SM*
PDF-3	4	SS	19	-	-	-	-	27	NP	-	-	-	-	GC
PDF-3	9	SS	30.2	-	-	-	-	-	-	-	-	-	-	SM
PDF-3	10-12	BULK	-	-	0	8	92	-	-	-	-	-	-	ML*
PDF-3	19	SS	39.5	-	-	-	-	-	-	-	-	-	-	SM
PDF-3	24	SS	53.7	-	-	-	-	40	NP	-	-	-	-	ML-OL
PDF-3	23-25	BULK	-	-	0	16	84	-	-	-	-	-	-	ML-OL
SSR-1	1	SS	9.6	-	-	-	-	29	12	136.8	6.8	-	-	CL
SSR-1	7	SS	9.5	ı	-	-	-	-	-	-	-	-	-	CL

Page 8 of 14 9/30/2013

Table 1 - Summary of 2011 Laboratory Index Test Results

				ASTM									AASHTO	
Sa	mple Locati	on	ASTM D2216	D6938	(CP-31 ¹		ASTM [04318	ASTM	D698	Hand Penet.	T85	USCS
Boring/ Test Pit	Depth (ft)	Туре	Natural Moisture Content (%)	Dry Unit Weight (pcf)	Gravel > #4 (%)	Sand (%)	Fines < #200 (%)	LL	PI	MDD (pcf)	OMC (%)	Unconfined Compressive Strength (psf)	Specific Gravity	Soil Classification
SSR-1	10	SS	4	-	60	27	13	24	NP	-	-	-	-	GC*
SSR-1	17	SS	8.2	-	-	-	-	-	-	-	-	-	-	CL
SSR-1	24	SS	12.1	-	-	-	-	-	-	-	-	-	-	CL
SSR-1	30	SS	10	-	-	-	-	-	-	-	-	-	-	CL
SSR-1	35	SS	11	-	-	-	-	-	-	-	-	-	-	CL
SSR-1	48	SS	5.8	-	-	-	-	-	-	-	-	-	-	CL
SSR-1	57	SS	9.7	-	-	-	-	-	-	-	-	-	-	SW
SSR-1	63	SS	11.3	-	-	-	-	-	-	-	-	-	-	GM
SSR-1	76	SS	16	-	-	-	-	-	-	-	-	-	-	SM
SSR-1	90	SS	10.7	-	-	-	-	-	-	-	-	-	-	SW
SSR-101	0-1.5	SS	14	-	48	33.9	18.1	-	-	-	-	-	-	-
SSR-101	2.5-4	SS	13.9	-	-	-	-	-	-	-	-	-	-	
SSR-101	5-6.5	SS	27.5	-	-	-	-	-	-	-	-	-	-	
SSR-101	7.5-9	SS	12.9	-	-	-	-	-	-	-	-	-	-	-
SSR-101	10-11.5	SS	13.1	-	42	37.3	20.7	=	-	-	-	ı	-	-
SSR-101	12.5-14	SS	17.4	-	-	-	-	-	-	-	-	-	-	-
SSR-101	15-16.5	SS	15.9	-	-	-	-	-	-	-	-	-	-	-
SSR-101	17.5-19	SS	9	-	-	-	-	-	-	-	-	-	-	
SSR-101	20-21.5	SS	24	-	-	-	-	-	-	-	-	-	-	
SSR-101	25-25.5	SS	6.8	-	-	-	-	-	-	-	-	-	-	
SSR-101	27.5-29	SS	10.8	-	40	37.8	22.2	-	-	-	-	-	-	
SSR-101	28-28.5	SS	34.7	-	-	-	-	-	-	-	-	-	-	
SSR-101	28.5-29	SS	44.9	-	-	-	-	-	-	-	-	-	-	
SSR-101	31.5-32.5	SS	9.6	-	-	-	-	=	-	-	-	-	-	-
SSR-101	35-36.5	SS	13.7	-	-	-	-	=	-	-	-	-	-	-
SSR-101	45-46.5	SS	30.7	-	-	-	13.5	=	-	-	-	-	-	-
SSR-101	50-51.5	SS	15.8	-	-	-	-	=	-	-	-	-	-	-
SSR-101	56.5-58	SS	14	-	-	-	-	=	-	-	-	-	-	-
SSR-101	60-61.5	SS	17	-	-	-	-	=	-	-	-	-	-	-
SSR-101	65-66.5	SS	12.4	-	-	-	16	-	-	-	-	-	-	-
SSR-101	70-71.5	SS	24.8		0	80.6	19.4	-	-	-	-	-	-	-

Table 1 - Summary of 2011 Laboratory Index Test Results

								1						
				ASTM	_	1							AASHTO	
Sa	ample Locati	on	ASTM D2216	D6938	C	P-31 ¹		ASTM [24318	ASTM	D698	Hand Penet.	T85	USCS
Boring/ Test Pit	Depth (ft)	Туре	Natural Moisture Content (%)	Dry Unit Weight (pcf)	Gravel > #4 (%)	Sand (%)	Fines < #200 (%)	LL	PI	MDD (pcf)	OMC (%)	Unconfined Compressive Strength (psf)	Specific Gravity	Soil Classification
SSR-101	75-76.5	SS	24	-	-	-	15.3	-	-	-	-	-	-	-
SSR-101	80-81.5	SS	25	-	-	-	-	-	-	-	-	-	-	-
SSR-101	85-86.5	SS	23.5	-	-	-	8.1	-	-	-	-	-	-	-
SSR-101	91.4-92.9	SS	22	-	-	-	-	-	-	-	-	-	-	-
SSR-101	95-96.5	SS	14.6	-	-	-	-	-	-	-	-	-	-	-
SSR-101	100-101.5	SS	13.3	-	9	84.7	6.3	-	-	-	-	-	-	-
SSR-101	105-106.5	SS	18.4	-	-	-	-	-	-	-	-	-	-	-
SSR-101	110-111.5	SS	18.1	-	-	-	-	-	-	-	-	-	-	-
SSR-101	115-116.5	SS	26.5	-	-	-	10.4	NV	NP	-	-	-	-	-
SSR-101	120-121.5	SS	16.3	-	-	-	-	-	-	-	-	-	-	-
SSR-101	125-126.5	SS	31.8	-	-	-	54.7	-	-	-	-	-	-	-
SSR-101	132-133.5	SS	26.5	-	-	-	-	-	-	-	-	-	-	-
SSR-101	137-138.5	SS	21.6	-	-	-	-	-	-	-	-	-	-	-
SSR-101	156-157.5	SS	6.8	-	-	-	-	-	-	-	-	-	-	•
SSR-101	160.5-162	SS	34.3	-	-	-	-	-	-	-	-	-	-	•
SSR-102	2.5-4	SS	7.9	-	26	47	27	-	-	-	-	-	-	-
SSR-102	5-6.5	SS	11.2	-	-	-	-	-	-	-	-	-	-	-
SSR-102	7.5-9	SS	14.7	-	-	-	-	-	-	-	-	-	-	-
SSR-102	10-11.5	SS	12.1	-	42	36.4	21.6	NV	NP	-	-	-	-	-
SSR-102	12.5-14	SS	8	-	-	-	-	-	-	-	-	-	-	-
SSR-102	15-16.5	SS	11.1	-	-	-	11.4	-	-	-	-	-	-	•
SSR-102	17.5-19	SS	12.1	-	-	-	-	-	-	-	-	-	-	-
SSR-102	20-21.5	SS	19.4	-	-	-	-	-	-	-	-	-	-	-
SSR-102	24.5-26	SS	14.9	-	52	33.1	14.9	-	-	-	-	-	-	-
SSR-102	27.5-29	SS	25.3	-	-	-	-	-	-	-	-	-	-	-
SSR-102	32.5-34	SS	16.2	-	35	35.8	29.2	-	-	-	-	-	-	-
SSR-102	45.5-46.5	SS	17.7	-	-	-	-	-	-	-	-	-	-	-
SSR-102	50.5-52	SS	19.1	-	-	-	19.1	-	-	-	-	-	-	-
SSR-102	57-58.5	SS	15.9	-	-	-	15.9	-	-	-	-	-	-	-
SSR-102	61-62.5	SS	17.5	-	-	-	17.5	-	-	-	-	-	-	-
SSR-102	66.5-68	SS	25.4	-	-	-	25.4	-	-	-	-	-	-	-

Table 1 - Summary of 2011 Laboratory Index Test Results

				ASTM	_	1							AASHTO	
Sa	mple Locati	on	ASTM D2216	D6938	C	P-31 ¹		ASTM [D4318	ASTM	D698	Hand Penet.	T85	USCS
Boring/ Test Pit	Depth (ft)	Туре	Natural Moisture Content (%)	Dry Unit Weight (pcf)	Gravel > #4 (%)	Sand (%)	Fines < #200 (%)	LL	PI	MDD (pcf)	OMC (%)	Unconfined Compressive Strength (psf)	Specific Gravity	Soil Classification
SSR-102	71.5-73	SS	25.5	_	-	-	-	-	-	-	-	-	-	-
SSR-102	76.5-78	SS	24.5	-	-	-	-	NV	NP	-	-	-	-	-
SSR-102	81.5-83	SS	25.5	-	-	-	79	NV	NP	-	-	-	-	-
SSR-102	86.5-88	SS	25.9	-	-	_	-	_	-	-	-	-	-	-
SSR-102	91.5-93	SS	24.8	-	-	-	94.6	_	-	-	-	-	-	-
SSR-102	96.5-98	SS	21.2	-	-	-	51.4	_	-	-	-	-	-	-
SSR-102	101.5-103	SS	27.4	-	-	-	83.2	NV	NP	-	-	-	-	-
SSR-102	106.5-108	SS	31	-	-	-	-	-	-	-	-	-	-	-
SSR-102	111.5-113	SS	26.9	-	-	-	52.5	_	-	-	-	-	-	-
SSR-102	121.5-123	SS	10.6	-	42	45.7	12.3	-	-	-	-	-	-	-
SSR-102	126.5-128	SS	17.4	-	-	-	-	_	-	-	-	-	-	-
SSR-102	136-136.3	SS	7.7	-	-	-	-	_	-	-	-	-	-	-
SSR-103	0-5	BAGGIE	11.3	-	-	-	-	-	-	-	-	-	-	-
SSR-103	10-13	BAGGIE	12.3	-	-	-	-	_	-	-	-	-	-	-
SSR-103	25-30	BAGGIE	7.2		-	-	-	-	-	-	-	•	-	-
SSR-103	5-35	BULK	2.4	-	43	37.1	19.9	28	8	-	-	-	-	-
SSR-103	60-65	BAGGIE	10.8	-	-	-	-	-	-	-	-	-	-	-
SSR-103	37-70	BULK	6.5	-	29	42	29	_	-	-	-	-	-	-
SSR-103	80-86	BAGGIE	11.1	-	-	-	-	-	-	-	-	-	-	-
SSR-103	70-87	BULK	8.8	-	17	47.9	35.1	-	-	-	-	-	-	-
SSR-104	0-5	SONIC	6.7		44	34.5	21.5	-	-	-	-	•	-	-
SSR-104	5-8	SONIC	5.4		52	28.4	19.6	-	-	-	-	•	-	-
SSR-104	8-10	SS	15.5					-	-	-	-	•	-	-
SSR-104	10-15	SS	41.8					-	-	-	-	•	-	-
SSR-104	17.5-20	SONIC	5.6	-	51	33.7	15.3	NV	NP	-	-	-	-	-
SSR-104	17.5-32.5	SONIC	-	-	-	_	-	_	-	131.5	8.1	-	2.65	-
SSR-104	20-22.5	SS	8.1	-	-	_	-	_	-	-	-	-	-	-
SSR-104	22.5-25	SONIC	4.9	-	-	_	20.5	_	-	-	-	-	-	-
SSR-104	25-27.5	SS	8.3	-	-	_	-	_	-	-	-	-	-	-
SSR-104	30-32.5	SONIC	7	-	-	-	16.5	-	-	-	-	1	-	-
SSR-104	32.5-35	SONIC	8.2	-	-	_	-	26	7	-	-	-	-	-

Table 1 - Summary of 2011 Laboratory Index Test Results

				ASTM									AASHTO	
Sa	mple Location	on	ASTM D2216	D6938	C	P-31 ¹		ASTM [04318	ASTM	D698	Hand Penet.	T85	USCS
Boring/ Test Pit	Depth (ft)	Туре	Natural Moisture Content (%)	Dry Unit Weight (pcf)	Gravel > #4 (%)	Sand (%)	Fines < #200 (%)	LL	PI	MDD (pcf)	OMC (%)	Unconfined Compressive Strength (psf)	Specific Gravity	Soil Classification
SSR-104	35-40	SS	1.3	-	-	-	-	-	-	-	-	-	-	-
SSR-104	40-45	SONIC	10	-	41	38.3	20.7	NV	NP	-	-	-	-	-
SSR-104	45-47.5	SONIC	11.5	-	-	-	25.7	-	-	-	-	-	-	-
SSR-104	47.5-48.5	SS	10.3	-	-	-	-	-	-	-	-	-	-	-
SSR-104	48.5-50	SONIC	7.1	-	-	-	23	-	-	-	-	-	-	-
SSR-104	50-52.5	SONIC	12.4	-	47	34.3	18.7	27	9	-	-	-	-	-
SSR-104	52.5-55	SS	8.1	-	-	-	-	-	-	-	-	-	-	-
SSR-104	55-56.5	SONIC	9.3	-	-	-	24.1	-	-	-	-	-	-	-
SSR-104	56.5-60	SS	8.5	-	-	-	-	-	-	-	-	-	-	-
SSR-104	60-62.5	SONIC	13.6	-	-	-	20.6	-	-	-	-	-	-	-
SSR-104	62.5-65	SONIC	6.4	-	52	32.1	15.9	27	7	-	-	-	-	-
SSR-104	65-70	SONIC	4.9	-	-	-	16.6	-	-	-	-	-	-	-
SSR-104	70-71.5	SS	7.5	-	-	-	-	-	-	-	-	-	-	-
SSR-104	71.5-75	SONIC	8.8	-	-	-	18.5	-	-	-	-	-	-	-
SSR-104	76.5&77.5-8	SONIC	10.7	-	42	33	25	33	10	-	-	-	-	-
SSR-104	76.5-77.5	SS	8	-	-	-	-	-	-	-	-	-	-	-
SSR-104	81.5-85	SONIC	7.6	-	-	-	18	-	-	-	-	-	-	-
SSR-104	85-89	SONIC	8.9	-	41	31.1	27.9	28	9	-	-	-	-	-
SSR-104	89-93	SONIC	10	-	-	-	34.5	-	-	-	-	-	-	-
SSR-104	93-96	SS	3.2	-	-	-	-	-	-	-	-	-	-	-
SSR-104	96-102	SONIC	4.4	-	-	-	14.3	-	-	-	-	-	-	-
SSR-104	102-104	SONIC	9.7	-	-	-	-	30	11	-	-	-	-	-
SSR-2	2	SS	9.8	-	-	-	-	28	9	-	-	-	-	CL-OL*
SSR-2	0-6	BULK	-	-	-	-	-	-	_	118.8	10.4	-	-	ML
SSR-2	7	SS	6.9	-	-	-	-	28	10	-	-	-	-	CL
SSR-2	6-12	BULK	-	-	-	-	-	-	-	121.1	9.9	-	-	CL
SSR-2	12	SS	7.9	-	-	-	-	-	-	-	-	-	-	CL
SSR-2	17	SS	12.4	-	-	-	-	-	-	-	-	-	-	CL
SSR-2	24	SS	16	-	-	-	-	-	-	-	-	-	-	CL
SSR-2	31	SS	20.5	-	-	-	-	28	11	11	-	-	-	CL*
SSR-2	36	SS	28.8	-	-	-	-	-	-	•	•	-	-	GC

Table 1 - Summary of 2011 Laboratory Index Test Results

				ASTM		4							AASHTO	
Sa	mple Locati	ion	ASTM D2216	D6938	(P-31 ¹		ASTM [D4318	ASTM	D698	Hand Penet.	T85	USCS
Boring/ Test Pit	Depth (ft)	Туре	Natural Moisture Content (%)	Dry Unit Weight (pcf)	Gravel > #4 (%)	Sand (%)	Fines < #200 (%)	LL	PI	MDD (pcf)	OMC (%)	Unconfined Compressive Strength (psf)	Specific Gravity	Soil Classification
SSR-2	66	SS	10.4	-	56	30	14	-	-	-	-	-	-	GM
SSR-2	75	SS	37.7	-	55	34	11	-	-	-	-	-	-	GM
SSR-3	2	SS	-	-	-	-	-	-	-	-	-	-	-	GW-GC
SSR-3	8	SS	-	-	-	-	-	-	-	-	-	-	-	GC
SSR-3	13	SS	15.4	-	-	-	-	-	-	-	-	-	-	CL
SSR-3	18	SS	-	-	-	-	-	-	-	-	-	-	-	CL
SSR-3	30	SS	15	-	-	-	-	-	-	-	-	-	-	CL
SSR-3	37	SS	20.2	-	-	-	-	-	-	-	-	-	-	GC
SSR-3	39	SS	11.1	-	-	-	-	-	-	-	-	-	-	GW-GC
SSR-3	53	SS	11.6	-	-	-	-	-	-	-	-	-	-	GW-GC
SSR-3	70	SS	8.1	-	-	-	-	-	-	-	-	-	-	GW-GC
SSR-3	76	SS	7.5	-	-	-	-	-	-	-	-	-	-	SP
SSR-3	87A	SS	7.9	-	-	-	-	-	-	-	-		-	SP
SSR-3	87B	SS	8.5	-	-	-	-	-	-	-	-	-	-	SP
SSR-3	91	SS	19.3	-	-	-	-	-	-	-	-	-	-	SW
SSR-3	95	SS	18.5	-	-	-	-	-	-	-	-	-	-	SP-SM
SSR-4	0-4	BULK	7.5	-	36	38	26	24	4	126.6	10.3	-	-	SM*
SSR-5	0-4	BULK	6.5	-	57	33	10	-	-	132.8	7.3		-	GW-GM*
SSR-5	6	SS	12.4	-	21	48	31	25	2	-	-		-	SM*
SSR-5	9	SS	29.3	-	12	23	65	-	-	-	-		-	ML*
SSR-5	13	SS	25.6	-	-	-	-	-	-	-	-		-	SM
SSR-5	17	SS	42.9	-	1	30	69	-	-	-	-		-	ML*
SSR-5	22	SS	76.7	-	2	42	56	-	-	-	-	1	-	ML*
SSR-5	27	SS	13.2	-	-	-	-	21	1	-	-	-	-	GC
SSR-5	32	SS	10.3	-	-	-	-	=	-	-	-	-	-	-
SSR-5	40	SS	23.8	-	-	-	-	=	-	-	-	-	-	SW
SSR-5	40-45	BULK	-	-	4	85	11	=	-	-	-	-	-	SW-SM*
SSR-5	48	SS	26.9	-	-	-	-	-	-	-	-	-	-	SP
SSR-5	47-50	BULK	-	-	0	61	39	=	-	-	-	-	-	SM*
SSR-5	57	SS	27.9	-	-	-	-	-	-	-	-	-	-	SM
SSR-5	55-60	BULK	-	-	0	51	49	-	-	-	-	-	-	SM

Table 1 - Summary of 2011 Laboratory Index Test Results

Sa	ımple Locati	on	ASTM D2216	ASTM D6938	CP-31 ¹			ASTM [04318	ASTM	D698	Hand Penet.	AASHTO T85	uscs
Boring/ Test Pit	Depth (ft)	Type	Natural Moisture Content (%)	Dry Unit Weight (pcf)	Gravel > #4 (%)	Sand (%)	Fines < #200 (%)	LL	PI	MDD (pcf)	OMC (%)	Unconfined Compressive Strength (psf)	Specific Gravity	Soil Classification
TP2004A1	-	BULK	14.9	-	59	28	13	26	8	-	-	-	-	-
TP2004B	-	BULK	13.8	-	64	24	12	31	11	-	-	-	-	-
TP2004C	-	BULK	11.8	-	46	32	22	26	8	-	-	-	-	-
TP2004D	-	BULK	9.2	-	32	44	24	21	4	-	-	-	-	-

Notes:

¹ CP-31 is a sieve analysis method established by the Colorado Department of Transportation that modifies AASHTO T11 and T27.

Table 2 - Embankment Fill - Direct Shear Test Results

		Proctor at Optimum ure Content		Proctor at Optimum cure Content
Test Pit	2-point envelope	3-point envelope	2-point envelope	3-point envelope
TP2011-03	40° / 280 psf	NT	44° / 800 psf	NT
TP2011-04	38°/ 410 psf	41° / 260 psf	42° / 600 psf	NT
TP2011-06	40° / 290 psf	NT	45° / 780 psf	53° / 240 psf
TP2011-08	37° /160 psf	38°/ 80 psf	47° / 500 psf	52° / 130 psf

Notes:

NT = case not tested

Table 3A. IDF Solids - Specific Gravity and Atterberg Lir

Cell/Location Number	Specific Gravity	Atterberg Limits (%)						
		LL	PL	PI				
1A (Round 8)	2.95	-	-	-				
3A (Round 8)	2.99	-	-	-				
Pond 18 (0-30")	3.00	67	62	5				
Pond 18 (0-30")	2.99	83	79	4				
Pond 18 (12-42")	3.00	77	74	3				

Table 3B. IDF Solids - Moisture Content (%) / Dry Unit Weight (pcf)

	Round Number													
Cell/Location Number	1	2	3	4	5	6	7	8	9					
1														
Α	169.8/27.6		257.9/20.8	214.9/22.3	210.3/25.4	133.0/31.0		217.7/23.8	95.5/48.4					
В	189.0/27.8	382.6/-	183.2/27.2	150.0/32.4			145.1/33.7	27.6/87.2	86.2/41.5					
С	111.6/42.7				98.1/44.3	87.8/47.1	71.5/47.4							
2														
Α	129.4/38.7	302.0/-	93.4/14.0	104.1/38.5		122.4/32.4		50.0/68.0	148.4/28.4					
В	320.4/22.3		238.8/21.0	158.5/31.5	240.6/26.8		218.5/24.1		195.9/32.6					
С	129.8/38.0				212.8/23.1	80.5/52.9	95.1/45.3	277.9/20.7						
3														
Α	314.18.5	357.4/-		241.0/20.8	233.7/22.7	261.6/21.0		78.3/30.9	223.3/24.2					
В	141.2/32.2		261.2/20.9	247.4/22.9			234.2/21.6	207.5/25.3	117.9/32.9					
С	248.2/21.3		237.8/22.0		202.0/26.8	239.8/22.1	219.3/23.8							
4														
Α	227.8/23.8		197.0/26.1		184.7/25.3	211.8/25.4	206.8/27.6		215.8/26.7					
В	170.1/28.9	273.1/-	205.0/23.4	330.1/16.6				207.4/23.3						
С	196.6/27.0			268.1/20.2	255.4/19.5	232.4/21.1	223.9/21.4	192.5/22.5	221.5/22.6					

Table 3C. IDF Solids - Undrained Shear Strength (Peak/Residual - psf)

	Round Number														
Cell/Location Number	1	2	3	4	5	6	7	8	9						
1															
Α			211/53			426/168			391/96						
В		238/48		437/65				210/46							
С					134/24		592/53								
2															
Α		143/30		425/46				119/25							
В			142/40				327/44		210/67						
С					310/57	135/20									
3															
Α		189/50			387/74			173/52							
В				278/52			238/38		150/65						
С			107/31			226/50									
4															
Α			538/85		276/64		365/65								
В		262/44						246/33							
С				468/50		189/59			127/35						

Table 3D. IDF Solids - Hydraulic Conductivity (cm/sec)

				Ro	und Numl	ber			
Cell/Location									
Number	1	2	3	4	5	6	7	8	9
1									
Α	1.0E-05								
В			8.9E-07						3.9E-06
С							2.3E-06		
2									
Α		8.3E-07							
В				6.6E-06					
С								5.8E-05	
3									
Α		6.6E-07						1.1E-05	
В			1.1E-06						
С									
4									
Α	2.8E-04						2.8E-06		
В									
С				2.5E-06					4.3E-06

Table 3E. IDF Solids - Consolidation Data

Round Number	Cell	e _o	e _f	Сс	Cr	σ' _v ,mp (psf)	σ' _v ,max (psf)
1	1A	10.5	5.0	5.7	0.06	1200	5000
1	3A	5.3	4.6	1.2	0.10	1500	5000
1	4A	4.9	3.6	1.5	0.08	1100	5000
2	1B	8.2	4.8	4.0	0.10	900	5000
2	2B	2.7	2.1	1.4	0.02	1000	5000
4	1B	9.2	5.4	5.0	0.15	950	5000
4	3B	6.5	4.9	3.1	0.12	1700	5000
5	2B	7.8	6.9	1.9	0.12	1600	2500
5	4A	6.0	4.5	2.9	0.08	1500	2500
6	1C	3.2	2.9	0.5	0.02	1600	5000
6	3C	4.7	3.1	2.2	0.06	1100	5000
7	2C	2.5	2.3	0.5	0.12	1500	5000
7	4C	3.7	3.3	0.5	0.05	1100	5000
8	1A	6.7	6.2	1.5	0.11	1900	5000
8	3A	4.5	3.9	1.3	0.06	1800	5000
9	2A	5.7	4.3	2.5	0.11	1400	5000
9	4A	5.7	5.0	1.7	0.09	1700	5000

Table 3F. IDF Solids - Triaxial Test Results

Round Number	Cell	e ₀	e _f	Φ'	c' (psf)	σ' _c (psf)
1	1A	5.8	3.3	29.6	55	300, 1600, 4000
1	4A	8.4	3.8	28.7	76	800, 1600, 4000
2	3A	7.1	5.1	29.2	157	700, 1600, 4000
4	1B	4.6	3.4	26.2	220	700, 1600, 4000
4	4B	9.4	4.3	28.2	302	700, 1600, 4000
6	2A	5.0	3.8	29.5	124	700, 1600, 4000
6	3C	8.3	4.8	27.3	179	700, 1600, 4000
7	4C	7.3	3.7	29.8	100	700, 1600, 4000
7	1C	6.7	3.2	29.2	137	300, 1600, 4000
8	2C	8.1	4.7	29.5	137	300, 1600, 4000
8	3B	6.2	2.6	31.1	64	300, 1600, 4000
9	1A	3.0	2.3	32.1	246	300, 1600, 4000
9	4A	6.6	4.1	28.8	254	300, 1500, 4000

Table 4 - Groundwater Well Elevations, Rico Colorado

							MW-1	MW-1	MW-4	MW-4	MW-5	MW-5	MW-6	MW-6					
Date	GW-2	GW-3	GW-5	GW-6	GW-7	GW-8	DEEP	SHALLOW	DEEP	SHALLOW	DEEP	SHALLOW	DEEP	SHALLOW	MW-101	MW-102	MW-202	P13-102	P13-103
Oct-02	8826.50	8831	8823.5	8823	8820.00	8806.00													
Nov-04	8824.48	8823.73	8819.88	8822.49	8818.70	8810.62													
May-05	8829.14	8826.11 8825.83	8824.79 8822.44	8823.85 8822.20	8825.05 8822.69	8821.34 8817.57													
Aug-05 Jan-06	8827.56	8823.56	8818.60	8818.76	8817.25	8814.98													
Jul-06	8824.10 8825.65	8823.81	8819.91	8818.80	8818.61	8815.77													
Jul-10	0023.03	0020.01	0010.01	0010.00	0010.01	0010.77													
Jul-10			8820.48	8814.35	8819.87														
Jul-10			8820.14	8814.07	8819.35														
Aug-10			8820.27	8817.76	8818.96														
Sep-10			8819.666	8817.33	8818.52														
Oct-10			8819.27	8816.68	8818.04														
Nov-10			8817.875	8816.03	8817.23														
Dec-10			8817.72	8815.97	8818.89														
Jan-11			8818.27																
Feb-11																			
Mar-11			8817.66																
Apr-11			8819.79	8817.73	8819.19														
Apr-11			8820.02	8816.3	8819.34														
Apr-11		0005.00	8820.33	8816.55	8819.64														
May-11 Jun-11		8825.38	8821.02	8818.81	8815.85														
Jun-11 Jul-11		8825.59 8824.62	8821.65 8820.07	8817.78 8816.33	8821.95 8820.14														
Aug-11		8824.01	8819.04	8815.32	8818.93														
Sep-11		8823.83	8818.37	8814.48	8817.89														
Oct-11		8823.89	8818.32	8816.68	8817.38														
Nov-11		8823.81	8818.09	CNO	8817.41		8802.38	8804.63	8800.32	8800.02	8813.67	8815.1	8807.37	8807.74					
Dec-11		8823.78	8817.65	CNO	8817.00		8801.86	8804.56	8799.89	8799.88	8813.4	8814.76	8806.95	8807.35					
Jan-12		8823.68	8817.30	CNO	8816.80		8801.71	8804.49	8799.76	8799.76	8813.15	8814.40	8806.72	8807.07					
Feb-12		8823.68	8817.30	CNO	8816.80		8801.72	8804.53	8799.81	8799.78	8813.12	8814.15	8806.70	8807.09					
Mar-12		8824.02	8818.22	CNO	8817.08		8801.99	8804.68	8800.23	8800.24	8813.67	8814.24	CNO	8807.78					
Apr-12		8824.33	8819.48	CNO	8819.30		8802.14	8804.71	8800.51	8798.54	8814.54	8816.03	8808.30	8808.93					
May-12		8823.00	8818.85	CNO	8820.48		8802.40	8804.72	8800.40	8800.42	8814.19	8815.59	8807.74	8808.23					
Jun-12		8823.87	8818.29	CNO	8817.79		8801.91	8804.68	8799.98	8800.00	8813.78	8815.20	8807.27	8807.72					
Jul-12		8822.89	8817.95	CNO	8817.42		8801.86	8804.48	8799.95	8799.99	8813.57	8815.05	8807.21	8807.62					
Aug-12		8821.82	8817.62	8815.98	8817.09		8801.81	8804.23	8799.97	8799.98	8813.39	8814.86	8807.13	8807.47					
Sep-12		8822.88	8817.28	8815.72	8816.91		8802.44	8804.93	8799.76	8799.76	8813.16	8814.57	8806.80	8807.20					
Oct-12		8823.24	8818.56	8816.67	8817.09		8801.59	8804.68	8800.09	8800.11	8813.84	8814.51	8807.25	8807.68	0040.45	0047.50	CNIC	0000 04	0000.50
Nov-12		8822.86	8818.02	8815.24	8817.12		8800.47	8804.27	8799.85	8799.85	8813.55	8814.52	8806.55	8807.45	8818.15	8817.50	CNO	8800.04	8800.58
Dec-12		8823.70 8823.59	8817.36 8816.92	8815.77	8816.86		8801.14	8804.30	8799.74 8799.62	8799.75 8799.62	8813.17	8813.39 8813.99	CNO	8807.18	8817.64	8817.05	CNO	8799.93 8799.83	8800.45 8800.35
Jan-13 Feb-13		8823.71	8816.92	8815.43 CNO	8816.59		8801.09 8801.10	8804.21 8804.22	8799.62	8799.62 8799.61	8812.92 8812.94	8813.83	8806.61 8806.51	8806.9 8806.75	8818.32 8817.02	8816.66 8816.67	CNO CNO	8799.83 8799.85	8800.35
Mar-13		8823.65	8817.07	CNO	8816.49		8801.53	8803.89	8799.66	8799.64	8812.89	8813.65	8806.57	8806.86	8817.137		CNO	8799.893	8800.394
Apr-13		8824.17	8817.92	8816.91	8817.11		8801.96	8804.3	8800.44	8800.44	8813.93	8815.17	8807.81	8808.24	8818.417		8825.606	8800.523	8801.354
May-13		332 1.17	3317.02	3310.01	3317.11		8802	8804.49	8800.28	8800.29	8813.82	8815.19	8807.44	8807.82	8818.61	8817.93	8824.51	8800.57	8801.1
ıvıay-13							8802	8804.49	8800.28	8800.29	8813.82	8815.19	8807.44	8807.82	8818.61	8817.93	8824.51	8800.57	8801.1

Table 4 - Groundwater Well Elevations, Rico Colorado

Date	GW-2	GW-3	GW-5	GW-6	GW-7	GW-8	MW-1 DEEP	MW-1 SHALLOW	MW-4 DEEP	MW-4 SHALLOW	MW-5 DEEP	MW-5 SHALLOW	MW-6 DEEP	MW-6 SHALLOW	MW-101	MW-102	MW-202	P13-102	P13-103
Average	8826.24	8824.13	8819.05	8817.34	8818.43	8814.38	8801.74	8804.47	8799.99	8799.88	8813.51	8814.64	8807.11	8807.53	8817.90	8817.15	8825.06	8800.09	8800.66
Max	8829.14	8831.00	8824.79	8823.85	8825.05	8821.34	8802.44	8804.93	8800.51	8800.44	8814.54	8816.03	8808.30	8808.93	8818.61	8817.93	8825.61	8800.57	8801.35
Min	8824.10	8821.82	8816.92	8814.07	8815.85	8806.00	8800.47	8803.89	8799.61	8798.54	8812.89	8813.39	8806.51	8806.75	8817.02	8816.49	8824.51	8799.83	8800.35

Notes:

CNL - Could Not Locate
CNO - Could Not Observe

Figures

SOLIDS REPOSITORY EVALUATION AND PRELIMINARY DESIGN REPORT FIGURE 3 - GEOTEHCNICAL INVESTIGATION LOCATION MAP **RICO-ARGEN**

AND PRELIMINARY DESIGN REPORT **EVALUATION** REPOSITORY

- REPOSITORY ALTERNATIVE LOCATIONS WITH SSR-A ALT-A

AND PRELIMINARY DESIGN REPORT SOLIDS REPOSITORY

ALUATION AND PRELIMINARY DESIGN REPORT 1 ALTERNATIVE A PLAN

SOLIDS REPOSITORY EVALUATION AND PRELIMINARY DESIGN REPORT FIGURE 6 - SSR-A-PHASE 1 ALTERNATIVE A SECTION

SITE-0001

RICO-ARGENTINE

A SSR-A-PH1-ALT-A SECTION
FIG-5 SCALE: 1"=50"

me. Z._CURRENT_PROJECTSIATLANTIC RICHFIELD\\00157757 RICO\\000_CADD\\05-REFERENCES\R

RICO-ARGENTINE SITE-OU01 SOLIDS REPOSITORY EVALUATION AND PRELIMINARY DESIGN REPORT FIGURE 7 - SSR-A-PHASE 1 ALTERNATIVE B PLAN

SOLIDS REPOSITORY EVALUATION AND PRELIMINARY DESIGN REPORT FIGURE 8 - SSR-A-PHASE 1 ALTERNATIVE B SECTIONS

Appendix A

Geotechnical Investigation Logs

Boring and Monitoring Well Logs

			_	10	LIENT	LOG OF	BORING N	NUMBER ADF/R1			
AECOM				1	Atlantic Richfield Company						
A	C	JN	1	F	ROJECT NAME	1	CT-ENGIN				
					Rico-Argentine Site - OU01	co-Argentine Site - OU01 Drilling C					
SITE LO	CAT	ON						UNCONFINED COMPRESSIVE STRENGTH TONS/FT 2 3 4 5			
			T					1 2 3 4 5			
F.			삣					PLASTIC WATER LIQUID			
DEPTH(FT) ELEVATION(FT)		m	SAMPLE DISTANCE		DESCRIPTION OF MATERIAL		_	LIMIT % CONTENT % LIMIT % ———————————————————————————————————			
DEPTH(FT) ELEVATION	8	Ĭ,	DIS	R	DEGGRA TIGHT OF WATERWAY	_	× ×	10 20 30 40 50			
DEF	SAMPLE NO	SAMPLE TYPE	APLE	RECOVERY			UNIT DRY WT	STANDARD			
\times	SAI	SAI	SAI	RE	SURFACE ELEVATION +8,843.9 Feet		3 8	PENETRATION BLOWS/(FT) 10 20 30 40 50			
	1	ss			FILL - Silty GRAVEL (GM) - moist - gra	ayish - angular					
			+	1	XXX						
				13	*NOTE: Laydown yard has been rewo excavating equipment	rked with					
		PA		1 3							
5.0	_										
	2	ss	П	1	5.5 6.0 FILL - Silty SAND (SM), fine to mediun	n - extremely		Z ⁵			
	-	-	H	1	dense - moist		1				
				18	>60 blows 6-12" at 5.5'		/				
		PA			FILL - Silty GRAVEL (GM), mostly peb	ble gravel - mois	st -				
10.0		Ш			grayish - angular rock fragments - grace FILL - Mine spent ore - well graded sa		_				
	3	ss		П	medium dense - dry - burgundy and wl	hite	A 1111	16			
		-	Ш	1	11 5 FILL - Calcines - sand and silt sized (S	taiom (M					
				3	TILL - Calcines - saint and sin sized to	nviy - moist					
		PA		18	14.0		- 14				
15.0				0	FILL - Spent ore - well graded SAND (SW) - medium					
10.0	4	SS	T	T	dense - moist - burgundy and trace wh	ite		12			
	4	33	Ш	Ц	FILL: Calcines - sand and silt sized (S	M) - wet	-11-				
		РА		1	18.5						
00.0				18	FILL - Silty GRAVEL (GM), Cobbles - r with 4.0" layer stained yellow	moist - light brow	m				
20.0			T	L	FILL - Calcine tailings - sand and silt si	ized (GM) -		\ ≥100			
	5	SS	Ш	Y	extremely dense - wet						
				1							
		PA		18	23.5						
			Г	ŝ	ALLUVIUM - Silty GRAVEL (GM) - and subrounded cobbles up to 5" diameter	gular to - extremely dens	se .				
25.0			1	T	- wet - flowing 25.0'-27.0' then increasi	ng clay down to					
	6	SS			30.0' - wet at 30.0' but not flowing						
				13	(%)						
	1	PA		10	73						
	1			18				Legaron -			
30.0	1 7	SS	T		ALLUVIUM - Silty GRAVEL (GM) - and	ular to		P60/12"			
31.0	7	33	П	-	subrounded cobbles up to 5" diameter	- wet - increasin	g —				
					clay down to 31.0' - wet at 31.0' but no End of Boring	t nowing (GM)	_/				
					Boring logged by: L. Beem						
					Casing: 7.0" I.D. Sonic						
			1								
	The	stra	tific	cati	on lines represent the approximate boundary lines	between soil typ	es: in sit	tu, the transition may be gradual.			
NORTHIN	G	1389	246	6	BORING STARTED 10/2/11	1	AECOM OFFICE Denver				
EASTING					BORING COMPLETED 10/2/11		ENTERED S	BY SHEET NO OF			
ML		2267	86	9	10/2/11						
		21.0	' W	D	SONIC CE	IC C600/		ED 60157757			

				CLIEN	T			LOG OF BO	ORING N	IUMBER	Α	DF/R	2		
A =		NA.	4			Richfield C	ompany								
A=	C	JIY			ECT N		01104	ARCHITEC			D -	I -			
TELO	OATI	ON		Rico	o-Arg	gentine Site	- 0001	Drilling	Com	pany:	Roa	INED CO	ngyea	ar Sive sti	RENGTH
TE LO	CAII	ON								-O-19	DNS/F1	Γ. ²	3	4	5
			П	T								-	+	-	-
<u>E</u>			SG								STIC IT %		ATER TENT %		QUID 11T %
ELEVATION(FT)		Ä	STAN			DESC	CRIPTION OF MATERIAL			>	<		•		A
ELEVATION	N H	H H	EDI	ER.						1	0	-	30 40 50		
	SAMPLE NO	SAMPLE TYPE	SAMPLE DISTANCE		25405	ELEVATION.	.0.040.7		UNIT DRY WT	2 6	3		RATION		/(FT)
7	(V)		S	2 SUF	XFACE XI	FILL - Silly G	RAVEL (GM), pea gravel s	size and stained -) J	1	0	20	30 4	10	50
	1	SS			1.5	moist - black									
					2.0		SILT (SM), coarse sand s pist - black with red	ize fragments of	1						
		PA				FILL - Silty CI	AY (CL/CH) with some P	ebble-Cobble	-/						1 1
		M			4.5	fragments and 3.0', rubber	d Gravel - moist - brown -	liner in core at							
5.0			1	-888	Š	FILL - Calcine	es (SM) 4.5-7.5' - calcines			1	D				Ø
	2	SS	Щ		8	with depth tra	ce fine gravel - extremely	dense							1
		XIII		¥ ₩	7.5										1
		PA			9.0	decomposition	debris mixed with Silt and n odor	d trace Clay -							1
0.0					9.5	FILL - Well gr	aded SAND (SW), mediur	n to coarse - wet							>50/6"
10.0	2	SS	П	-88	10.0	to saturated	RAVEL (GM) - angular gra	wal - evtremely	1						-
	3	55	Ш		8	\dense - satura	ated							1	1 1
				***	8	FILL - Silty Gl	RAVEL (GM), trace Clay, ar and subrounded cobble	increasing Clay						1	1
		РА	PA diameter - we					up to 1 m			1		,	-	
5.0					14.5		adad CDAVEL (CVA) with	flee to cooree				-	3/3		-
10.0	4	SS	П	¥ ₩	8	Sand - angula	aded GRAVEL (GW), with ar and subrounded 1-2" m	inus - dense -				-	⊗		
	4	33	Щ	-888	17.0		re and piece of timber						1		
			Н	2		ALLUVIUM - :	Silty GRAVEL (GM) with t	race Clay - mostly	У					1	
		PA	Ш	1,7	2	dense - wet n	obbles up to 5" in diamete ot saturated	er - extremely						1	
20.0				17	1									\	>50/6"
	5	ss	П	7.	20.5		GRAVEL (GM) with fine to	coarse Sand -				-	-		
	1		Щ	0		subrounded o	obbles up to 6" diameter-	saturated							>50/6"
				0											
			Ш	ď											
25.0				á		Increasing Sil	t to 28.0'								
		PA		6.0		Ü									
				0.											
			Ш	0	28.0	011 OD 11 (E)	TOLD IN F	6 1 1							
			M	19	2	and subround	(GM) with fine to coarse led cobbles up to 5" diame	Sand - angular eter - wet							
30.0				1/	30.0										
	na i					End of Boring Backfilled with	n bentonite chips to gravel	surface (8 bags)							
						Hole caved be Boring logged								1	
			П			Casing: 7.0"									
		1 - 4		1							_				
	The	strat	tific	ation lii	nes re	present the app	proximate boundary lines l	oetween soil types	s: in sit	u, the tra	nsitic	n may	be grad	dual.	
RTHING	G	1389	765				BORING STARTED 10/2/11	AECOM OFFICE Denver							
STING					BORING COMPLETED				ENTERED BY SHEET NO OF 1 1						
_		2267					RIG/FOREMAN								
7.0' WD							SONIC C6	00/		ED			601577	757	

	SA	MPUNG ISACK 1	Media 2700 In Lake City, 19 S (801) 972 X (801) 972 METHOL	-6222 -6235 D:	100	ARCO RICO RECLAMATION BORROW MATERIAL	BORING NO. APB-1 SHEET / OF / DATE STARTED: 10 APR 96 DATE COMPLETE: 10 APR 96 TOTAL DEPTH: 3.0. SURFACE ELEV: 8895 X: Y: N 26680 E. 20135
	SAMPLE NO.	SAMPLE DEPTH (ft)	оертн (п)	SYMBOL	usc	DESCRIP	ΠΟΝ
)	APB-I	0-3'	-0 -1 -2 -3	1000000	SC-CL O.H - GW	Sizes, scattered. 02-3.0 FT Brown Soil w/ I: Texture Sc-CL	C GRMISH Brown NORGANIC MATERIAL TO ICM SIZE. Some Large Rock Solated Sub-rounded rock

San Lake CI BUS (801)S FAX (801)S	00 South, Suite 100 ly, Ulah 84119 172-6222 172-6235	ARCO RICO RECLAMATION	BORING NO. APB-2 SHEET / OF / DATE STARTED: 10 APR 1996		
SAMPLING METH LOGGED BY: J.		BORROW MATERIAL	DATE COMPLETE: 10 APR 1996 TOTAL DEPTH: 3-01 SURFACE ELEV: 8853		
SAMPLE NO. SAMPLE DEPTH (ft)	SYMBOL	DESCRIPT	N 26710 E 19940		
APB-2 -1 0-3'	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0-1.0' Rost Zint No No Color Reddish-Blown (Limonitic & Hematit FINES SAMAY SILL A ROCKS Mostly Sub-Angu 1.0' - 3.0' SIMILAR LARGER ROCK INCH LARGES SIZE 1.5 x 1 Two Others OVER	To Yellow-EROWN. IND CLAY Ilar To ABOVE REASING Percentage 2 × 1.7		

-	<u> </u>	Sal	5 West 2100 t Lake City, S [801] 972 K (801] 972 METHO.	South, Suite Ulah 84119 -8222 -6235 D: [Zach]	100	ARCO RICO RECLAMATION BORROW MATERIAL	BORING NO. A P-3- SHEET / OF / DATE STARTED: 10 APR 96 DATE COMPLETE: 10 APR 96 TOTAL DEPTH: 32 SURFACE ELFV: 8836 X: T: N 26400 E 20000
	SAMPLE NO.	SAMPLE DEPTH (#)	DEРТН (tt)	SYMBOL	nsc	DESCRIP	
	AP8-		, 0	800	Gw- Sc- CL		e ORGANIC HORIZON
7		0-3'	-1	6/	p	BROWN Soil-Roc Subangular Row graduton From (GROUND Frozen	L Mustur- h_ consistent Top to Bottom. TO 2-5 Ft)
	***	-	- 2	9			
		, ,	-3	100		BoHom 3" wate	2^
	+						
)							

s	S B F AMPLING	75 West 2100 all Lake City, US (801) 972 AX (801) 972 B METHO	Company, Inc. South, Sulle 1 Utah 84119 1-6222 1-8235 D: LLCL AARTIN	100 100E -Y	ARCO RICO RECLAMATION BORROW MATERIAL	BORING NO. APR-4 SHEET / OF / DATE STARTED: 10 APR 96 DATE COMPLETE: 10 APR 96 TOTAL DEPTH: 3.0F+ SURFACE ELEV: 8828 X:E X: N 19370 26475
SAMPLE NO.	SAMPLE DEPTH (ft)	DEPTH (ft)	SYMBOL	OSO	DESCRIPTIO	DN
ONLY NEWS		0 1 2 3		GW-GP	Final About 3-12" Roch >12" 3-5 This Material con	9 much. No soil Honor 45-50% 45%

INDICATES UNDESTURBED SAMPLE

M INDICATES DISTURBED SAMPLE

KEY

ANACONDA RICO 04010-062-1608

- ☐ INDICATES SAMPLING ATTEMPT WITH NO RECOVERY
- INDICATES STANDARD PERETRATION TEST SAMPLE
- P IN BLOW COUNT COLUMN ENDICATES SAMPLER HYDRAULICALLY PUSHED

SAMPLE TYPE

- U DAHES & HOORE "U" BIT
- T = DAMES & MOORE THIN-WALL
- P DAMES & MOORE PISTON
- SPT STANDARD SPLET-SPOON
- D DAMES & MOORE "D" SAMPLER

NOTE:

- THE SOIL CONDITIONS ARE DESCRIBED IN ACCORDANCE WITH THE UNIFIED SOIL CLASSIFICATION SYSTEM, PLATE A-J.
- 2. BLOM FOURT HAS BEEN TAKEN AS THE NUMBER OF BLOWS REQUIRED TO DRIVE A SAMPLER TO ONE-FOOT PENETRATION USING A 140 FOUND WEIGHT FALLING 30 INCHES.

LOG OF BORING

DAMES & MOORE

野

FILE ANACONDA RICO 04010-002-1605

1.3

LOG OF BORING

DAMES & MOORE

EU.

1 8

934

ANACONDA RICO 04010-002-11005

Sile

A

200

FILE ANACONDA RICO 04010-062-1605

DAMES 8 MOORE

T	ANDER	SON				BORING LOG	PAGEOF	L
LOGG CHEC DRILL METH	ED BY: KED BY NG OD:	V	Ca A	PON SPER	HOLE DIAMI	ETER: USED: NA	COORDINATES OR LOCATION: GWL DEPTH (ENCOUNTIES) GWL DEPTH (STATION) DATE STARTED: DATE COMPLETED: A.G.S. TO B.G.S.	
SCRE	EN TYF	PE AND	SIZE:			A FROM	TOB,G,S.	
DEPTH()	SAMPLE TYPE AND NUMBER	SAMPLE DEPTH INTERVAL	BLOW COUNT	RECOVERY LENGTH (%)	PROFILE	DESCRIPTION	WELL CONSTRUC	TION SUMMARY
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 22 24 27 27 27 27 27 27 30		X I	e to	10 %		No recovery, shelly Of the free fell Drilled into void. In of any of 10' Ta Measured to 16 Used mirror to look boring. Cavity of the South. Move to another location 30' to the west	mushed another Rotton on into	
	TD=		0'			Oriller thought	we hit the	+

	# # ANDER					BORING LOG		PAGE 1 OF Z		
	ECT NA	ME: R	1ca	Pode	25	BORING C. 1.2 %	COORDINA	NATES		
_	ECT NO ED BY:		(05	PER		NUMBER: DIJ 3 R SURFACE	OR LOCATION OF THE CONTRACT OF			
CHEC DRILL	KED BY	': K	- Co		HOLE	ELEVATION: FLUID	TED: 10/9/9			
METH	OD:	115			DIAME	ETER: USED: NA	DATE COMP	PLETED:		
		E AND S				VA FROMFROM	A.G.S TO TO			
DEPTH()	SAMPLE TYPE AND NUMBER	SAMPLE DEPTH INTERVAL	BLOW COUNT	RECOVERY LENGTH (%)	PROFILE	DESCRIPTION		WELL CONSTRUCTION SUMMAR		
(2 3 4 5	05			m.		Silty sand and grown	ı			
6 1 8 9 10 11 12 13 14 15 16 17		I	322	75%		proce of muce was Ruce (oradized) in tip of Sandy Silt with clay Bruwn moist oxidered (red forage by Sand with some for Sand with some for Misse	shelby.			
18 15 25 21 22 23 24		I		C0%		Lt Brown wet sandy Wader				
25 20 27 28 29 30 31		Z V	10010	50%		Saturated Course sound Saturated Grant sound	Gray			
12	TD=		13			shelby - Tock of botton;	Complete	ly sealed and.		

ROJE ROJE OGGE	ANDER OF NA OF NO	ME:				BORING NUMBER: DL/- SURFACE ELEVATION:	3 A	PAGE Z OF Z COORDINATES OR LOCATION: GWL DEPTH (ENCOUNTERED) GWL DEPTH (STATIC)			
ORILLI METHO CASINO	NG DD: G TYP!	E AND S			HOLE	FLUID	FROM	DATE STARTED: DATE COMPLETED: _A.G.S TO B.G.S.			
	0	SAMPLE DEPTH BY INTERVAL CZ	BLOW COUNT	RECOVERY LENGTH (%)	PROFILE	DES	FROM	ТО		CONSTRUCTION SUMMAR	
33 34 35 32 32 37 38		X	· 17 -								
	TD=	_ 3	5	-			NOTE	S	-		

	ANDER					BORING LOG	PAGE
'ROJE	CT NA).;	005P			NUMBER: DI4-4	COORDINATES OR LOCATION: SWL DEPTH (ENCOUNTERED) //
	KED BY						SWL DEPTH (STATIC) NA
RILLI			15A		HOLE	1//	DATE STARTED: /0/7/08
	OD: G TYPI				DIAME		A.G.S TO B.G.S.
	EN TYP					VA FROM.	
DEPTH()	SAMPLE TYPE AND NUMBER	SAMPLE DEPTH INTERVAL	BLOW COUNT	RECOVERY LENGTH (%)	PROFILE	DESCRIPTION	WELL CONSTRUCTION SUMMARY
3 4						Sith sond + grand Red Sith grad - coloin Sith sand or grand Minor day	
ر ر ک		X	875				
9 10 11 12		X	4 22 2			Black 5114 With day Claya grand Water _ Silty grand or, day	
13 14 15 16 17 18		X	048			saturated Gray / die Brown Silty, clay	
20		_	62/			Saturated SSIA - DK. Bon	*n
		X	50/y	" 30%		Silty Sand and gravel du. Brown	
	-					NOTES	
	TD=	_ 20	.5			NOTES	

	ANDER	50N				BORING LOG	PAG	E L OF		
PROJ	ECT NA ECT NO ED BY:).: K		_	204	BORING NUMBER: 0/-/-// SURFACE	COORDINATES OR LOCATION: GWL DEPTH	(ENCOUNTERED) ~ Za		
	KED BY	P	CD 5/ 		HOLE DIAME	FLUID	GWL DEPTH DATE STARTED: * DATE COMPLETE	(STATIC) NA:		
CASIN	IG TYPI EN TYP	E AND	SIZE:		A,G,S TO TO					
DEPTH()	SAMPLE TYPE AND NUMBER	SAMPLE DEPTH INTERVAL	BLOW COUNT	RECOVERY LENGTH (%)	PROFILE	DESCRIPTION	w	/ELL CONSTRUCTION SUMMARY		
1 2 3 4		7				Brown Clayey Sill, mo Minor gravel				
1			27 50/1"			Red Silt - Calcine tailings Red Silt - Calcine tailings Sand : graves, saturated red lotown Wy Co Refusal @ 11'	56 les			
	TD=	_)	1		AH	tempted Stelly @ NOTES	but Sample	pulled out - B Recovery		

See .

	ANDER	SON				BORING LOG	PAGE 1 OF Z
PROJE	CT NA	ME: R	100	PON	201	BORING NUMBER: 014-12 R COORDINAT	ES
LOGGI						SURFACE GWL DEPTH ELEVATION: GWL DEPTH	(ENCOUNTERED) 43'
DRILLI METH	NG OD:	ODE	EX.		HOLE DIAME	TER: USED: AIR DATE START	TED: 10/13/08
CASIN		E AND	SIZE:			NA FROM A.G.S TO	B.G.S.
JOILE			OILL:	T- 1		TO TO THE TOTAL THE TOTAL TO TH	56.6
DEPTH()	SAMPLE TYPE AND NUMBER	SAMPLE DEPTH INTERVAL	BLOW COUNT	RECOVERY LENGTH (%)	PROFILE	DESCRIPTION	WELL CONSTRUCTION SUMMARY
1 2 3 4				eser*		Brown Sandy 514 with some	
5 6 7 8						Brown Clayey 5/14 with some sand and smith grown	
10	_				gram market (Elliste	Rick	P
12						Red Silty sand with graves	
14 15 16 17 18 19 23 21 22		X	485			Brailing Sandy 's . It with some Clay and gravel	
23 24 25 26 27 28 25 27 28 25 31	1					Brown sondy Silt with	
32	TD=			_		NOTES	•
	10=					*	

0.00

	ANDER			0		BORING LOG	PAGE Z OF Z
	ECT NO					BORING NUMBER: DIT-12R OR LOCATION	
LOGG	ED BY:					SURFACE GWL DEPTH ELEVATION: GWL DEPTH	(ENCOUNTERED) 43
DRILLI		OD	cX)		HOLE DIAME	TER: USED: AIR DATE STAR	
	_	E AND				FROM A.G.S TO	B.G.S.
		E AND				VA FROM TO	
DEPTH()	SAMPLE TYPE AND NUMBER	SAMPLE DEPTH INTERVAL	BLOW COUNT	RECOVERY LENGTH (%)	PROFILE	PESCRIPTION	WELL CONSTRUCTION SUMMARY
33 34 34 36 30						Sandy Silt and gravel,	
38			\$.	**************************************	une roor	Rock - American	
41			- V			Sandy si't and groved priver clay Red took extensions silt of Sound	
47 43				-		gravel with some silt	Water @ 43'
44						and the same of th	ma e
us						Stayen silt wy minor grand maist - wet	out of water e ?
51 52 53						Sandy grand with some silt, minist	
53 54 55						harder drilling	
						4D J.	
-							
						NOTES	
	TD=	55	5	4	_5	NOTES NOTES NOTES NOTES NOTES NOTES NOTES	from ODEX hommer
						€	29

State of Wisconsin Department of Natural Resources

SOIL BORING LOG INFORMATION

Form #400-122 Rev. 7-98

W 711	The T					11.1		.11.7		Too. T		TV.		e 1	of	2
	y/Proje			a, Rico, Colorado		License/				Number		Boring	Numb	er EB	-1	
				of crew chief (first, has	t) and Firm	Date Dri			17(7	Da	ie Drill	ing Co	mpletee			ing Method
	Penn ne-W		1				i [/]	5/200	4			11/18/	2004		hs	a/odex
	nique W			DNR Well ID No	Common Well Name	Final Sta					e Elevi		2005	Bo	rehole	Diameter
Local	Grid O	rigin	S1 (es	stimuted: []) or Bo	EB-1	8,82	20.9	Feet S	ite			9 Feet Grid Le			8.0	inches
State		. Em	10.	N.	E S/C/N	1.0	it	0	1	- "			N N	ļ		⊠ E
NW		of N	W 1	/4 of Section 25.	7 40 N, R 10 W	Lon		0	10	**		92 Fee			7917	Feet W
Facili	D ID			County		County Co	ode			City/ or orado		e				
Sar	nple							Terec	, 001	T		Soil	Prop	erties		
Number and Type	Length Att & Recovered (in)	Blow Counts	Depth In Feet	And C	Rock Description Icologic Origin For Ich Major Unit		CS	Graphic Log	Well . Diagram	PID/FID	Compressive Strength	Moisture Content	ird ir	Plasticity Index	0	RQD/ Comments
Num	Leng	Blov	Dep				n s	Gray	Wel	PID	Con	Moi	Liquid Limit	Plastic Index	P 200	RQI
J SS 2 SS 3 SS 4 SS 4 SS 4 SS 4 SS 5 SH 55 SH	24 24 24 24 24 24 24 24 24 24 24	29-44 18-14 5-8 8-12 4-9 8-11 5-5 7-7 5-4 4-3	-18 -20 -22	FILL ("Calcine to gray, loose to	ry dense, WASTE I Tailings"): Purple- medium dense, fin d. SILTY SAND, ra	maroon e to	SM	200			62 16 17 12 8					Note: Compressive Strength = Strength Note: Length att. on splir spoon = 24"
-			-24		,			01/0					1			
		ify that	the int	formation on this form	is true and correct to the			wledge		ilva						
Signa	()	AA	Len	1 K- Keec	FirmSE	HI	ne	Chippey	va Falls hinc.co	. WI 54	729					: 71 <i>5.</i> 720.6200 : 715.720.6300

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299. Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A

Sample Jack Major Unit Soil/Rock Description And Geologic Origin For Each Major Unit Soil Properties Soil Properties			4			_			_	_		26.	hment to Form 4400	1 Ose Only as all allac.	EB.	Set.	y Num	DOTAL
And Geologic O-igin For Each Major Unit Solve The Hard The			ies	erti	Prop	lic	S							42.00				San
Brown, dense, fine to coarse GRAVEL (alluvium), much fine to coarse grained sand. 24 22-20 28 24-50	RQD/ Comments	P 200	Index	Plasticity	Limit	Content	Moisture	Compressive Strength	PID/FID	Well	Graphic	SC	n For	And Geologic Origi	Depth In Feet	Blow Counts	Length Att. & Recovered (in)	Number and Type
								44				S n GP	e GRAVEL parse grained	Brown, dense, fine to coars (alluvium), much fine to co sand. End of boring at 33' (refuse)		22-20 24-50	24	7 55

State of Wisconsin Department of Natural Resources

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

Facility/Pro St. Louis Boring Drill Jeff Pen Layne-V Wl Unique	s Por led By nell	ids /	A			11.7		- T		4	- 1	NO.				
Boring Drill Jeff Pen Layne-V WI Unique	led By nell		A			License/				Anmbei		Boring	Numb		~	
Jeff Pen Layne-V Wl Unique	nell			, Rico, Colorado	and Firm	AAR)			00_	1130	te Drill	ing Cor	naletan	EB		ling Method
Layne-V W1 Unique		, iva	me o	i crew carer (first, fast) and ritin	Daile 1511	ning 2	Statica		11232	ic oin	ing Coi	ipicie	,1		llow stem
	ACPIC	rn						9/200				1/19/	2004		au	iger
1811	Well 1	No.		DNR Well ID No.	Common Well Name	Final Str				100	e Elevn		0.4	Bo		Diameter
	Origin	×	fost	imated: or Bo	EB-2	8.8	8.8	Feet S	ite		1,826.8 Local (8.0	inches
State Plane			lesi	N.	E S/C/N	La	ıt	*	1	- 10	2.37.2.01	37.00	□ N			□Е
	4 of]	WV	1/-	4 of Section 25,	T 40 N R 10 W	Lon		۵	1				□ S			Feet W
Facility ID				County		County Co	nde			City/ or	Village	1				
Sample		-	-					Kicc	, Col	orado T		Soil	Prop	erties	_	-
				Soil/F	Rock Description					1 8			1.100	Citics		
Number and Type Length Att. &	Blow Counts		Depth in Feet		eologic Origin For						Compressive Strength	1				5
Number and Type Length Att.	S S		H H	Ea	ch Major Unit		CS	ohic		PID/FID	ipres ngth	Sture	pi ti	Plasticity Index	Q)/ Imen
Number and Type Length At	Blov Blov		Depl				US	Graphic	Well	107	Con	Moisture Content	Limit Limit	Plastic Index	P 200	RQD/ Comments
					y dense, WASTE I	ROCK,		***								
1 SS 24	4-4		2	Vigneous cobbles FILL("Calcine T	'ailings"): Purple-1	naroon	7 1				10					Note: Compressive
	,,,,		2	to gray, loose to	medium dense, fin	e to										Strength = SPT N value
2 X 74	5-	4	4	very fine grained gravel	I, SILTY SAND, ra	ire					0					Note: Length
Δ		-	.	Elector								1				att, on split spoon = 24"
3 SS \ 24	3		6								9					
, A	3-	-									3					
4 SS \ 24			8						¥	1	J					
KA		E					SM									
		-	10													
		-														
		-	12													
		-												1		
5 SS V 24		-	14								2					
SS	1-	1														
		E	16							1						
		E		Brown, dense, fi	ine to coarse GRA	VEL		601	ž I							
		E	18	(alluvium), muc sand.	h fine to coarse gra	ined		200		1						
6 SS 24	12-		20	Said,				10/0			74					
33	,	E	20				GP	0.0	a	40	1		1 -			
		E	22					° Da								
			42					000	1 1		1	1				
		E	-24	End of boring at	24'			000	7 1							
Lhereby ca	etify t	_		rmation on this form	is true and correct to the	hest of n	ny kno	wiedo				1	1		1	
Signature	1		u	001	FirmSE			421 Fre	nette D	rive 5, W1 54					T.	1: 715.720.6200

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

State of Wisconsin Department of Natural Resources

Rome To:

Watershed/Wastewater [

SOIL BORING LOG INFORMATION

Form 4100-122 Rev

т.	_	 -	, 41	-	
R	as.	7.	90		

	y/Projec					License/				lumbe	r	Boring	Numb			
				a, Rico, Colorado				0105.0	00	Ira	. 15. 11		1.		-2D	E-Mai-T
	Penno		Name	of crew chief (first, last) and Firm	Date Dri	Hing 5	Started		1.72	te Drill	ing Co	mplete	1	Dni	ling Method
	ne-We		n			İ	11/1	8/200	4			1/19/	2004		00	łex
	ique W			DNR Well ID No.	Common Well Name				vel		e Elevi			Bo		Diameter
v 1	er tales	End.	F-1			/	Feet	Site			1,826.				5.0	inches
State		igin	(S) (G)	stimated: () or Bo N.		l,z	nt	5			Local	and La	nomiae A 🗵			⊠ E
NW		of N	W	/4 of Section 25.	T 40 N R 10 W	Lon	g	3	J	н			1 🗆 9		7920	Feet W
Facilit	y ID			County		County Co	ode	Civil				2				
0	of to T		1					Rico	, Col	orado I	r	Call	Dean	a wi i a a		
San	nple			Sai1/1	Rock Description							1	Prop	erties		
	Length Att & Recovered (in)	ints	Depth In Feet		cologic Origin For						Compressive Strength					A3
ype	th A	Co	- E		ch Major Unit		CS	Hic	rarr	8	press gth	ture	79 _	ici ty		меш
Number and Type	Jeng Reco	Blow Counts	Dept				ns (Graphic	Well Diagram	PID/FID	Com	Moisture	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
F. 10		-	-		y dense, WASTE	ROCK,		×××								
				\igneous cobbles	Failings"): Purple	maraan										
			-2	to gray, loose to	medium dense, fi	ne to					1	1				
SH	24		-	very fine grained	I, SILTY SAND,	гаге										Note: Compressive
an			-	gravel												Strength =
2 SH	24		-													SPT N value Note: Lengt
311			-6													att, on split spoon = 24"
58	24		-8					****								3" diameter split spoon
V			E													used (no
3 SH	24		-10				SM		1							shelby rec)
- 0			-				(***		1						
4 SH	24		-12								1	1				
			-													
			-14							1	1					0.0
2 1	24	4-1	-						3		2					
SS X	2.4	1-4	-16						3	1	1					
V	1		=					***	3							
			-13	Brown dense f	ine to coarse GRA	VEL		****	× ·				1			1
			=		h fine to coarse gr			8. O.				1	1			1
			-20	sand.				000				1				
			-				GP	000	1							
			-22					250								
			-					20	9		1	1				
			-24	-				Oc				-				
I here	by certi	fy tha	t the in	formation on this form	is the and correct to t	he best of n	ny kno	wledge								

Waste Management

SOIL BORING LOG INFORMATION SUPPLEMENT Form 4400-122A

EB-2D Page 2 Boring Number Use only as an attachment to Form 4400-122. Soil Properties Sample Length Att. & Recovered (in) Soil/Rock Description Compressive Strength Depth In Feel Blow Counts And Geologic Origin For Moisture Content Graphic Log Well Diagram Each Major Unit End of boring at 24' (abandoned - moved to EB-2, approx. 10' to east)

					LIENT				LOG OF B	ORING NU	MBER	ED	-4			
A	C	DA	1			ic Richfi	ield Co	ompany	ARCHITEC	T-ENGINE	FR					
			-			Argentin	e Site	- OU01		Compa	any: B	oart	Long	gyea	r	
SITE LO	CATI	ON		-							O UNC	S/FT.2	ED COM	PRESSI	VE STRE	NGTH
											-		-			
(E)			NCE								PLAST LIMIT		CONTE		LIQU	Г%
DEPTH(FT) ELEVATION(FT)	Ş	YPE	SAMPLE DISTANCE	≿			DESC	RIPTION OF MATERIAL		×	X- 10	20	30	40	<u>-</u>	
DEPTH(FT) ELEVATION	SAMPLE NO.	SAMPLE TYPE	PLET	RECOVERY						UNIT DRY WT	10		STANDAF	-	-	
<u> </u>	SAM	SAMI	SAM	REC	SURFA	ACE ELEVA	TION	+8,810.2 Feet		UNIT	⊗ 10		ENETRA 30	TION E		FT)
		-	П		****	FILL -	Clayey	Silty Sandy Cobbly GRA\ lar to subangular gravel -	/EL (GC-GM) -	1		X	2			
		GB			***	40% g	ravel, 4	0% sand and 20% fines -	fines moderately				27			
			1	-	***		: - medit v moist	ım dense to dense - dark	brown 10YR 3/4	7			Ø			
	1	GB			****	Thin c	alcine la	ayer at 2.0' ayer at 3.0'					1			
5.0		GB				TIMITO	alcille ic	iyer at 3.0				85		1		
me	2	GB	П		***								~ ~	-		
		GB	1	1										-	` ~	,
	3	GB	T			Scatte	red oxid	dized waste rock 7.5-9.0								- 1
-	3		Ц			0.0.40) () Ci~	nificant increase in grave	size						-	
10.0		GB	-			-appro	ximateľ	y 50% gravel, 40% sand a	and 10% silt -				8	3-		
_	4	GB	Ш		***	cobble	es to 3.5	" - reddish gray 10YR 5/1					1			
		GB	ľ		***	Tendir	na towai	rd predom, subrounded g	ravel 12 0-14 0' -			&14				
	5	GB	T		****	dark re	eddish b	prown	4401 12.0-14.0			×]				
	1	-	μ.	▼	0 1		in tip at alcine la	13.25' ayer at 14.0'		1		-1	1		-	-
15.0		GB	-		0	ALLU	VIUM - S	Silty Sandy GRAVEL (GV	/) - approximately	1		×	-∆ ⊗			
	6	GB			0	suban	gular gr	0% sand and 10% silt - si avel - medium dense to d	ense - reddish					*		
					d .		5YR 4/	3 - wet ange in fines at 15.0' - ap	proximately 20%		l li				\	
		GB			0	clay, 4	10% san	d and 40% gravel - fines							-	Ç.
		1			0	plastic	city - cor	obles to 4" - moist (GC)								1
20.0	-	0.0	tr		o.	Becon	ning wet	t		0 1	K					-
	7	GB	Ц		0							/			-	
					0 2	30 1		la.				/		-		
		GB			7. 0	3.0 Large ALLU	VIUM - 1	ine to medium grained S/	AND (SP), <5%			1	-			
25.0				d		Silt - s	cattered	d angular to well rounded 5YR 4/3 - loose - moist t	gravel - dark		8-					
2010	8	GB	T			24.0-2	25.0': U	p to 30% gravel content a		.	W					
	1		1	-			26.0': No	o gravel - transitions to sil			1					
					80.0			llowish red 5YR 4/6 (SM) ansitions to <5% silt fines			1					
		GB				20 0-0		S. I.S. MOTO CO. TO THE INTOC	(5.)							
30.0											8					
24.5	9	GB				4.5										
31.5	1		1		[3		f Boring									
								bentonite (9 bags) by: A. Jewell								
						Casin	g: 5.5"	I.Ď.								
	The	stra	tific	ati	on lines	s represent	the app	roximate boundary lines	r			sition	may be	e grad	ual	
ORTHIN	G	1387	767	1				BORING STARTED 10/2/11		AECOM OFF	ICE	Denv	er			
ASTING		2268						BORING COMPLETED 10/2/11		ENTERED B	Y	SHEE	ET NO	OF	1	
VL.								RIG/FOREMAN		APP'D 8Y		AECO	OM JOB I	NO	67	
		14.0	W	U				MINI-SONIC C100/I	J. Cerventes	EE	U		- 6	01577	ا0	

AEC		M	1	At		ic Richt	ield Company	DRAFT ARCHITECT-			ED-102			_
7-1	_	///	1				ine Mine Site	Anderso			Compar	ıv. Inc.		
SITE LOCA	TIO	N	+	1 (1	-	Agent	THE WITTE OILE	741401001		LOUNCO	NEINED COM	PRESSIVE S	STRE	.N
Rico	Ar	gen	tin	е						TONS	/FT, ² 3	4	5	
DEPTH(FT) ELEVATION(FT)	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE				DESCRIPTION OF MATERIA	AL	UNIT DRY WT. LBS./FT.³	PLASTIC LIMIT % ————————————————————————————————————	20 30	NT %	LIQU LIMIT	7
	AMPL	AMPL	SAMPLE DIS		HDE	ACE ELEV	ATION +8,827.3 Feet		UNIT DRY LBS./FT.3	8		TION BLOV	NS/(F	F
\sim	1	AS	o a	- XX	SSI		: Well graded fine to coarse ang	ular to subangular	127	10	20 30	40	50	-
	2	RB SS		×		fine FILL	el with silt and sand - 35% fine to silt and clay - dark brown 10yr 3/ : Silty GRAVEL with sand, 30%	o coarse sand, 15% 3 - dry (FILL: GM) fine to coarse sand,		•	2E ⊗	3		
		RB	1	-8	*	20% med	fine silt and clay - dark brown 10 ium dense to very dense - (FILL:	Jyr 3/3 - moist - GM/GC)					-	
	3	ss	Ш		***		s of mine waste rock mixed in	,		1		_	-	
5.0		RB	1	8						8 /		*1 S		
	4	ss		8			et change to loose			8				
	₹В			8		FILL	: Sifty sandy gravel - 57% fine to	coarse gravel,		1			1	
	5	SS SS	1	HX.		31.5 dark	% fine to coarse sand - 11.5% si reddish brown 5yr 3/3 - loose to	It/clay (seams) - medium dense -		& - s	3			
	J	-	1	-8		wet	(FILL: GM) er notes possible voids 9' to 10'			,	\			
10.0		RB	1			10.2		1 20/ fine	1 -	#			_	
	7	SS RB				47% 3/2 -	MINE WASTE ROCK): Sandy si fine to coarse sand, 51% silt/cla loose - moist - non plastic - (FIL	y - dark brown 7.5yr		8				
	8	SS				FILL	STE ROCK) Clayey sand, little gravel - 15% angular gravel, 52% fine to coars	e subangular to	Ħ	10	//			
45.0		RB	1	⊗	<u> </u>		ounded sand, 33% silt & clay - d e - wet (FILL: SC)	ark brown 7.5yr 3/2 -		100	1			
15.0	9	ss	F		\otimes	with	rvium/Possible FILL WASTE RC sand, fine to coarse angular to s fine to coarse subrounded to su	ubangular gravel, bangular sand, 15%		10				
		RB		×		16.8 silt 8 GM)	clay - black 5y 2.5/2 - loose - w	et (Possible FILL:	/					
	10	SS	I	\mathbb{Z}_{\geq}		10.1	ale 16.5'	40% subangular to		111				
	10	SS	Ц			subr	sible FILL: Silty sand with gravel ounded fine to coarse sand, 27%	silt, 10% fine to	1	180	•			
20.0	11	RB SS	I			trace	se subangular to subrounded gr e stick fragments, root fragments grial - very dark brown 10yr 2/2 -	& other organic		\$				
		RB	1			Orga	st (possible FILL: SM) anic silt, fibrous plant material, st	icks & roots - black		1				
	12	SS	1			Part	2/0 - moist - stiff - (OL) ly organic silty clay with sand, 25 angular to subrounded sand, trac	e fibrous plant	*	息				
25.0		RB	+	1		4.5 (CL)	erial & fine roots, black 5y 2.5/1 - but grades into (CL/OL) then to	sandy SILT (ML)			7-	40		
=210	13	ss	T	F.		ROC	with zones of 45% sand - variable KS: Cobbles & Boulders drill ac	tion	1			· R		ĺ
		RB	1	0 0 .		subr	ium/Colluvium mix: Well graded ounded to angular gravel, 30% f ded to subangular sand - dark o rated - dense - (GW)	ine to coarse		1			1	5
30.0				0	N	30.0				1				
		1					A 6 =	continued	* Ca	librated Per	netrometer			

			П	CLIENT				LOG OF BOI	RING NUI	MBER	Е	D-102			
A	C	AC	A		Richfield Con	npany		DRAFT	ENOUSE	CD.					_
	-	e i		PROJECT NA		Sito		Anderso			ina C	omno	nv In		
SITE LO	DATI(N.	4	RICO - Ar	gentine Mine	Site		Anderso	n Eng	meer	INCONE	NED COM	IIY, III	VE STRE	N
Rice			ntir	ne						T	ONS/FT	2 3			
			П								+	, ,		-	-
Ē			팋								ASTIC 1IT %	CONT		LIQU	
DEPTH(FT) ELEVATION(FT)		Ä	STA		DESC	RIPTION OF MATE	RIAL		5		×)		i
DEPTH(FT) ELEVATION	ы	i F		le Ry					RY V		10	20 3	-	0 50)
	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE	SURFACE	ELEVATION .			/O !!	UNIT DRY WT		8	STANDA PENETR		BLOWS/(F	-7
×	S)	S	(S)	SURFACE	Allivium: Well of	raded GRAVEL wi	th sand 65%	(Continued))]	-	10	20 3	0 4	0 50	j
24.5	14	SS			subrounded to	mostly subangular	gravel, 30%								
31.5			Н	31.5	subrounded to cobbles - dark	subangular sand, 5 yellowish brown 10	5% clay fines vr 3/4 - wet -	s, scattered · verv	/ *Ca	librated	l Penet	rometer			
				,	\dense - (GW)		<i>y</i> , <i>a</i> , , , , , , , , , , , , , , , , , , ,	,							
					End of boring a	it 31.5' anced to 12.5 feet.	Boring adva	nced to							
					30.0 feet with 2	!-15/16" tricone roll	er bit. Boreh	ole tremie							
					grouted with his	gh solids bentonite	grout.								
				1											
													1		
				1											
				1											
			Ш												
	The	gtro	tific	ation lines re-	resent the appr	oximate boundary	lines hetwee	n soil types	in eitu	the tr	ansitio	n may h	ne nrac	lual	=
ORTHING	3		_		лезен ше аррг	BORING STARTED	V4/42		ECOM OF		Der		o yrat	inal.	
EASTING		1388 2267				BORING COMPLETED	0/4/12	E	NTERED B	Y		EET NO.	2 OF	2	
NL		ZZ0/	33 2	.440		RIG/FOREMAN		Al	PP'D BY		AF	COM JOB			-
		W.L.	@	12.5 W.D.		AMS Compact Sor	nic 10-C/Greg	Schroth				сом Јов	602398	18	

866 ⊗

			ī		LIENT	LOG OF BO	ORING NUM	ABER ED-103	
A	CC		1		Atlantic Richfield Company ROJECT NAME	DRAFT ARCHITEC	T-ENGINE	R	
	-	7	=		Rico - Argentine Mine Site			ineering Compan	y, Inc.
SITE LO				1				UNCONFINED COMP	RESSIVE STRENGTH
Rice	o-A	rger	nti	ne			_	TONS/FT. ² 1 2 3	4 5
DEPTH(FT) ELEVATION(FT)		E	SAMPLE DISTANCE		DESCRIPTION OF MATERIAL		5	PLASTIC WATE LIMIT % CONTEN	
DEPTH(FT) ELEVATION	SAMPLE NO.	SAMPLE TYPE	APLE DIS	SOVERY			UNIT DRY WT.	10 20 30 STANDARI	
\times	SAN	SAN	SAN	REC	SURFACE ELEVATION +8,811.5 Feet			⊗ PENETRAT 10 20 30	TION BLOWS/(FT) 40 50
	1	RB SS		I	FILL: Well graded gravel with silt and sa coarse sand, 20% silt and clay - 10YR5 (FILL: GM) FILL: Well graded sand with clay and gr	5/3 brown - moist		9 9	
					coarse angular gravel, 41% fine to coars clay and silt - 10YR3/3 dark brown - me moist (FILL: SC)	se sand, 24%			
5.0		RB			5.6	to #fc			
	2	SS			FILL: Poorly graded sand with gravel - c angular to subangular sand, 40% fine to to subangular, 5% fines - 10YR3/3 brow (FILL: SP)	coarse angular			
		RB	T	Ι	100% loss of drilling fluid while drilling b	etween 5.6 ft and		•	₩ 24
10.0	3	SS			7.6 ft. Driller noted no down pressure re drilling for 7.0 to 10.0 ft. Possible void conditions at 8.0 ft.	quired while			
	4	SS		I	FILL: Well graded gravel, little fine to co silt - 75% fine gravel up to 1" diameter, coarse sand, 6% silt/clay - 7.5YR3/2 da	19% fine to			
	F	RB	Ė	T	to loose - wet (FILL: GW) Clayey gravel - 48% angular to subroun	ded gravel, 30%		2 218	
15,0	5	SS			fine to coarse sand, 22% silt/clay - 10Yf brown and 2.5YR3/4 dark reddish brown - wet (GC)	R5/6 yellowish			
	6	SS		I				• &	
		RB	1	_	18,0			29	
20.0	7	ss		1	Gravel, clay, sand, silt mixture -70% gravel, clay, 5% clay, 5% sand, 5% silt - Yellowish brown - medium dense - wet i	10YR5/4			* * * * * * * * * * * * * * * * * * * *
	8	RB	Ī	I	20.5 Poorly graded gravel, sand, clay, silt mit to coarse gravel, 24% fine to coarse sand	nd, 6% clay/silt -		•	
	ľ	RB			10YR4/3 brown - very dense - wet (GP)				-
	-	-	T	-	24.0 Poorly graded gravel, sand, clay, silt mi.	xture - 70% fine			8
25.0	9	SS		1	to coarse gravel, 15% fine to coarse said 10YR4/3 brown - dense - wet (GC)	nd, 15% clay/silt	-		
27.5					27.5 End of boring at 27.5'. Boring advanced	with roller bit an	d		
					HQ casing. Borehole backfilled with ber	ntonite grout.			
	The	stra	tific	cat	ion lines represent the approximate boundary lines b				gradual
NORTHIN	G	1387	85	6.4			AECOM OF	Denver	
EASTING		2267	994	4.0	BORING COMPLETED 10/27/12 RIG/FOREMAN		ENTERED B AM APP'D BY	H 1	
WL		None	e O	bs	erved Modified Ditchwitch/	Cory Watson	, 501	AECOM JOB N	239818

				CLIEN Atla		Richfield Company	LOG OF BOR	ing nui	MBER	E	D - 108			
AI				PROJ	ECT NA	AME	ARCHITECT-E							
				Ric	o - Ar	gentine Mine Site	Andersor	n Eng	ineer	ng C	ompa	ny, Ir	IC.	NIZTU
Rice		_{DN} rgen	tin	е					107	NCONFI ONS/FT. 1	2 2 2	3 4	1VE STRE 4	- 1
				1					DI 4	etic.	14/4	TED	110	
DEPTH(FT) ELEVATION(FT)			SAMPLE DISTANCE						LIM	STIC IT %		TER ENT %	LIQ! LIMI	T %
DEPTH(FT) ELEVATION	Š.	I7PE	VST VS	:		DESCRIPTION OF MATERIAL		TW.		← — — 0 2	20 ;	30 4	— — <u>-</u> ∠ 10 5	
DEP	SAMPLE NO.	SAMPLE TYPE	SAMPLE DIS					UNIT DRY WT LBS./FT.3			STANDA	ARD		
<	SAN	SAN	SAN	SU	RFACE	ELEVATION +8,810.8 Feet		LB SI		⊗ 0 2		RATION I	BLOWS/(0 5	FT) 0
					8	FILL: Well graded gravel with silt and san coarse subrounded gravel, 35% fine to co	arse sand, 20%		1				1-7	
	1	AS	1		2.0	fines, mostly silt - dark brown 7.5YR3/2 - GM)	moist (FILL:		,					
	2	SS	+	-		FILL: Well graded sand with silt, clay, and	fine to coarse			7				
		33	1	-88	8	gravel - 28% fine to coarse gravel, 43% fi angular to subrounded sand, 19% to 29%	fines - dark			T		li li	1	
5.0		HSA			8	brown 7.5Y3/2 - dense to very dense - mo	oist (FILL: SM)							51
	3	ss	P	-	8					•				.5 ⊗
		He A	+	-										
		HSA		-88	8							3		
	4	SS			8					/ /	-			
10.0		HSA			× 10.0					+				
	4	ss	1	-88	8	FILL: Well graded gravel with clay and sa coarse angular to subrounded gravel, 30%	nd - fine to % fine to coarse		8	•	1			
			1	-	8	sand, 20% fines - dark brown 7.5Y3/4 - lo			I		1			
		HSA	-	XXX	12.5	Organic silty clay with roots and fine fibro	us plant		A			1		
	5	SS			1	material - black 10YR2/1 - firm to soft (Ol Following completion of boring, offset bor	(LOI = 5.31%)		勢			1		
15.0		HSA				to obtain shelby tube from 12.5 ft-14.5 ft	Qp = 0.25 tsf.		1			1	A	
1010	6	ss	T	1		Second shelby tube obtained from 14.5 ft	- 10.5 II.		13			1		
	Ĭ		1	-	-			7			×-	-A		
		HSA	-	. =	17.5	Well graded gravel with sand - 57% fine t	o coarse broken	-		-	25			-
	7	SS	I			angular gravel, 37% fine to coarse angula	ar to subrounded			1	0	-		
20.0		HSA	1		20.0	sand, 8% fines - very dark grayish brown medium dense - wet (GW)	2.013/2=			i i			-	٠.
20.0	8	ss	1		0 20.0	Well graded gravel with silt and sand - fin angular to subrounded gravel, 35% fine to	e to coarse			•				
	0	33	4	PL	21.5	to subrounded sand, 20% fines - very dar	k grayish brown			/				
	0	HSA SS		K	22.0	10YR3/2 - very dense - wet (GM) BOULDER	/							
	9	33	1	20	24.0	Well graded gravel with silt and sand - fin angular to subrounded gravel, 35% fine to	e to coarse			1				1
25.0		HSA		CO.)	24.0	to subrounded sand, 20% fines - very dar	k grayish brown			1				
25.0	10	00	1			\10YR3/2 - very dense - wet (GM) Poorly graded sand - 2% fine gravel, 89%		1		10 -	1-			
	10	SS				subrounded sand, 9% fines- dark reddish to 7.5YR3/4 - loose to medium dense - w					I			
					V)		, ,							
		RB									1			
											1			
30.0				1		conti	nued	* Cal	lbrated	Penetr	+-I-			
						or it								
								_		NO 602398				

ΑΞ	CC	\		F		Richfield Company	DRAFT			D-108	
		<i>)</i>			ROJECT NA	ME gentine Mine Site	Andersor			ompany, l	Inc.
ITE LOC					CICO - A	gentine mine one	Paradiooi			INED COMPRES	
Rico	o-Ar	ger	tir	ne					1	2 3	4 5
ELEVATION(FT)		3E	SAMPLE DISTANCE			DESCRIPTION OF MATERIAL	_	5	PLASTIC LIMIT % — -	WATER CONTENT %	LIQUID LIMIT %
ELEVATION	E NO	ETY	E DIS	ÆRY				JRY W	10	20 30	40 50
<u> </u>	SAMPLE NO.	SAMPLE TYPE	SAMPL	SECO	SURFACE	ELEVATION +8,810.8 Feet	(Continued)	UNIT DRY WT. LBS./FT.³	⊗ 10	STANDARD PENETRATION 20 30	BLOWS/(FT)
	0,		T	T		Poorly graded sand - 2% fine gravel, 8	9% fine rounded to		10		1 1
	11	SS	l	1	100	subrounded sand, 9% fines- dark redd to 7.5YR3/4 - loose to medium dense	- wet (SP-SM)				
		RB							9		
	12	SS		Ц	W				S	1 1	
35.0		RB	1		35.0						
JU.U	13	SS		T	35.0	Very fine to fine poorly graded sand, so dark yellowish brown 10YR4/.4 - loose	ome silt (28%) - - wet (SM)		4	•	
			Ц	-	111	dark your province province in the contract of	wor (Om)			\\	
		RB	П	T	37.5	Very fine to fine poorly graded sand, so	ome silt (29.2%) -	-	10		1
	14	SS		Н		brown 7.5Y4/4 - loose - wet (SM)					
40.0		RB							10	1 1	
	15	SS							6	1	
		RB			10.5				Ī		
	15	00	Т	T	42.5	Very fine to fine poorly graded sand wi	th 9% silt - brown		!₁1 ⊗		
	15	SS	1	_		7.5Y4/4 - medium dense - wet (SP-SM	1)		1	1 1	
45.0		RB	Т		45.0	Very fine to fine poorly graded sand, tr	ace silt - brown			1-1-	
	16	SS		Ц		7.5YR4/2 - loose -wet (SP)	aco one oromi		7	1	
		RB			47.5				/	/	
	17	SS	I	I		Silt (non-plastic), with very fine sand dark reddish brown 5Y3/4 - very loos	6% very fine sand e - wet (ML)		3		
		RB	1	4					1	/	
50.0			T	I	50.0	Well graded gravel and sand with silt -	53% angular to	1	•	≥1 ⊗	
	18	SS			1	subrounded gravel, 36% angular to su 11% fines - dark reddish brown 5Y4/7	ibrounded sand, - medium dense -			/	
		RB			52.0	wet (GW-GM) Well graded gravel with sand - fine to	coarse angular to		1/4		
	19	SS				subrounded gravel, 40% fine to coarse subrounded sand, 7% fines - dark rede			1,5	1 1	1 1
55.0				7		medium dense - wet (GW-GM)			1	1 1	1 1
30.0		RB	3						1		1 1
	1										
	-		T	1	.00			1	3	1 1	
	20	SS		13							
60.0					60.0					\	
						C	ontinued	* Ca	librated Pene	trometer	

AECOM				00.011				BORING NUMBER ED-108			
			1		Atlantic Richfield Compar ROJECT NAME			-ENGINEER			
			_		Rico - Argentine Mine Site				n Engineering Company, Inc.		
SITE LOC								H III	UNCONFIN TONS/FT.2	NED COMPRESSIN	
Rico)-Ar	gei	nti	ne				-	1 2	2 3 4	5
Ê			H.						PLASTIC LIMIT %	WATER CONTENT %	LIQUID LIMIT %
DEPTH(FT) ELEVATION(FT)		出	STAN	SAMPLE DISTANCE RECOVERY	DESCRIPTION OF MATERIAL SURFACE ELEVATION +8,810.8 Feet (Continued)			5	×		-
DEPTH(FT) ELEVATION	E N	SAMPLE TYPE	E DIS	ÆRY				UNIT DRY WT.	10 20 30 40 50		
3 1	SAMPLE NO.	AMPL	AMPL	ECO				NIT D	⊗	STANDARD PENETRATION B	
	S	S	S	α	Silt and very fine sar	nd (35%) - dark reddish	- '	(a) L	10 2	0 30 40	50
		RB			5YR4/2 - medium de	nse - wet (ML)			1	\	
									1 12	\	
	21	ss	I	П					å12 ⊗	•	
	21	33	Ц						X	/	1
5.0_									N.	/	
		RB			Occasional gravel se	eams noted from 62.5' to	o 67.5')		
					67.0				/^		
			1		Well graded gravel v	with fine to coarse sand 30% fine to coarse suba	- angular to		1	∵22 ⊗	
-	22	SS		+	subrounded sand, 7	% fines - brown 7.5YR4/	/2 - medium				
			1		dense to dense - we	t (GW-GM)			<i>y</i>		
0.0			l.						/		
		RB							/		
									/	125	
	00	00	T	T	2.9				•	4	
	23	SS							\ \	\	
5.0					2.9				\ \		
		RB		1						1	
		```							\\	i	
					T				7	X	40
	24	ss									
9.0			H		79.0 End of boring at 79.0	). Boring advanced with	HSA to 25	* Cal	librated Penetr	ometer	
					ft. Boring advanced	anced with 3 7/8" tricone roller bit to 77.5 ft. ced with split-spoon sampler to 79 feet. ni grouted with high solids bentonite grout.					
					Borehole tremi grout						
											) in
										,	
	Th		4100	00,1	on lines represent the	oto boundos, linea bet	oon soil tur-	er in eitr	the transition	n may be ared	ual
	_	stra	tifí	cati	on lines represent the approxima	ate boundary lines between		AECOM OFF	7100		udl.
1387709.662					52	10/27/12		Deliver			
2268112.799						ING COMPLETED 10/29/12		AM	IH	SHEET NO. OF 3	
W.L. @ 10.0' W.S. / 11.3' A.C.R						FOREMAN CME-85/Rory Pilmo	re	APP'D BY	AEC	AECOM JOB NO. 60239818	

LOG OF BORING NUMBER CLIENT **ED-108A Atlantic Richfield Company** DRAFT A=COM PROJECT NAME ARCHITECT-ENGINEER **Rico - Argentine Mine Site** Anderson Engineering Company, Inc. - UNCONFINED COMPRESSIVE STRENGTH TONS/FT.? 2 3 4 5 SITE LOCATION Rico-Argentine WATER LIQUID PLASTIC. **ELEVATION(FT)** SAMPLE DISTANCE LIMIT % LIMIT % CONTENT % _ **DESCRIPTION OF MATERIAL** UNIT DRY WT. LBS/FT.³ SAMPLE TYPE SAMPLE NO. 10 30 50 STANDARD ⊗ 10 PENETRATION BLOWS/(FT) SURFACE ELEVATION +8,810.8 Feet Offset boring 5' from ED-108 to obtain 3" Shelby Tubes. 16.5 feet S26 3" shelby tube observed sand & gravel on the bottom end of shelby tube. 5.0 HSA 10.0 84 S25 ST 15.0 77 S26 ST 16.5 16.5 End of boring at 16.5 feet.
Blank drilled with 4-1/4" ID HSA to 12.5 feet, then obtained 3" * Calibrated Penetrometer shelby tube samples from 12.5 to 14.5 feet, and 14.5 to 16.5 Borehole grouted with high solids bentonite grout to full depth. 60239818 RICO-UPDATED 4-8-13.GPJ FS DATATEMPLATE.GDT 4/29/13 The stratification lines represent the approximate boundary lines between soil types: in situ, the transition may be gradual. NORTHING AECOM OFFICE **BORING STARTED** Denver 1387709.662 10/29/12 BORING COMPLETED 10/29/12 ENTERED BY DCJ SHEET NO. **EASTING** 2268112.799 RIG/FOREMAN CME-85/Rory Pilmore AECOM JOB NO. 60239818 APP'D BY WL

Presented By

Colorado Department of Public Health and Environment 4300 Ghenry Creek Drive South Driver, CO, 80246

## WELL DEVELOPMENT DATA AND SAMPLE FORM SUMMARY

Regards Management Data

Project Number: Rico Light Inc	dustrial Park	Project Name: Rico Light Industrial Park						
Well Number: RLP-GW1		Well Location: Rico Light Industrial Park						
Time / Date:	10/16/02		Elevation :		8,800	ms1		
Drilling Method:	4-Inch Hollow S	tem Auger	Weather:		Clear Skies, Partly Sunny 60°F			
Development Company:	Kaventa Consul	ing			Slight	Breeze		
Date Development Started:	10/16/02		Date Development Completed:			10/16/02		
Screen Intervals: 4ft. To 9 ft bgs			Well Diameter:		2 Inch			
Depth of Well (L"):		9_ft.	Depth to Water Before Development ( $L^{t}$ ):			6.5 .0.		
Height of Water Column (L* - L1):	-	6 ft.						
Depth to Top of Sediment (Li)		9 ft.	Sediment Thickness (L* - L):			Na_fl-		
Well Volume:		0.96 gal.						
Total Volume Pumped:	- W W	30 gal.						
Number of Well Volumes Pumped	(total yolune pu	imped/well volume):	30+ volumes pumped on 10/16/02		0.16 gallons per foot on a 2-Inch Well			
	Monit	oring Well Sampl	e Data: Well RLP-0	GW1				
Date	Temp	pH	Cond	Gallons Pu	rged	Observations		
10/16/02 10/16/02	11.2 10.8	7.37 7.36	359 359	27 29		Slightly turbid Clear, Slightly turbid		
Sample collection continued after	well development incl	udes well development p	ourge volumes					
10/16/02 @ 1345			an ju			Sample Collected		
		Litb	ology					
0-9 feet Native	rocky cobble material							
Presented By	Dat		Checked By			Date		

Date

# **CDPHE**

Presented By

Colorado Departinent Si Public Health and Environment 4300 Cherry Creek Drive South mver, CO 80246

# WELL DEVELOPMENT DATA AND SAMPLE FORM SUMMARY

Records Management Data

Project Number: Rico Light Industrial Park Project Name: Rico Light Industrial Park Well Location: Rico Light Industrial Park Well Number: RLP-GW2 8,800 ms1 Elevation = 10/16/02 Time / Dale: Clear Skies, Partly Sunny 60°F Weather: 4-Inch Hollow Stem Auger Drilling Method: Slight Breeze Development Company: Kayenta Consulting 10/16/02 Date Development Completed: 10/16/02 Date Development Started: Well Diameter: 2 Inch Screen Intervals: 10.5 ft. To 20.5 ft bgs Depth to Water Before Development (L1): 6.5 R. 20.5 R. Depth of Well (L*): 2.0 1. Height of Water Column (L" - L1): Na ft. Sediment Thickness (L* - Li): 20.5 R Depth to Top of Sediment (Li) 0.32 gal Well Volume: 5 gal. Total Volume Pumped: 0.16 gallons per foot on a 2-lnch Well (total volume pumped/well volume): 4x volumes pumped on 10/16/02 Number of Well Volumes Pumped Monitoring Well Sample Data: Well RLP-GW2 Observations Gallons Purged Cond Temp Date Purged dry four times Clear 1004 7.29 10/16/02 11.9 Total of 5 gallons max Sample collection continued after well development includes well development purge volumes Sample Collected 10/16/02 @ 1620 Lithology Spent pyretic ore with mixed coble and rock. Ore materials are green and purple 0-12 feet in color. Leach pad liner at 12 feet bgs Native rocky cobble material 12-20.5 feet Date Checked By

Presented By

olorado Department of Public Health and Environment 4300 Cherry Creek Drive South спуст, СО, 80246

### WELL DEVELOPMENT DATA AND SAMPLE FORM SUMMARY

Project Number: Rico Light Industrial Park Project Name: Rico Light Industrial Park Well Location: Rico Light Industrial Park Well Number: RLP-GW3 8.800 msl Elevation : 10/16/02 Time / Date: Clear Skies, Partly Sunny 60°F 4-Inch Hollow Stern Auger Weather: Drilling Method: Slight Breeze Kaventa Consulting Development Company: 10/16/02 Date Development Completed: Date Development Starled: 10/16/02 Well Diameter: 2 Inch Screen Intervals: 7 ft. To 16.5 ft bgs 16.5 ft. Depth to Water Before Development (L'): 6.5 AL Depth of Well (L"): 9.5 fl Height of Water Column (L" - L'): Na_fl. Sediment Thickness (L" - L'): 16.5 ft. Depth to Top of Sediment (L') 1.12 gal. Well Volume: 15 gal. Total Volume Pumped: 0.16 gallons per foot on a 2-inch Well 14 volumes pumped on 10/16/02 (total volume pumped/well volume): Number of Well Volumes Pumped Monitoring Well Sample Data: Well RLP-GW3 Gallons Purged Observations Cond pH Date Temp Slightly turbid 6.46 1526 11.6 10/16/02 Slightly turbid 6.45 1529 10/16/02 10.9 Slightly turbid 6.44 1484 8 10.6 10/16/02 9 Clear, Slightly turbid 1512 10.8 6.42 10/16/02 * Sample collection continued after well development includes well development purge volumes Sample Collected 10/16/02 @ 1100 Lithology Spent pyretic are with mixed coble and rock. 0-3.5 feet Native rocky cobble material 3.5-16.5 feet Date Checked By Date

### CDPHE

Colorude Department of Public Health and Environment A 300 Cherry Creek Drive South

# WELL DEVELOPMENT. DATA AND SAMPLE FORM SUMMARY

Records Munagement Data

Project Number: Rico Light Ind	ustrial Park	Project Name: Ric	co Light Industrial P	ark	6w
Well Number: RLP-GW5	estadellida Cauth	Well Location: Ri	co Light Industrial I	°ark – d	whom El. all well were whown
Time / Date:	10/17/02		Elevation:	8.8	00 msl
Drilling Method:	4-Inch Hollow	Stem Auger	Weather:	Clo	ar Skies, Partly Sunny 60°F
Development Company:	Kaventa Consul	ting		Shi	ght Breeze
Date Development Started:	10/17/02		Date Development Com	pleted; 10/	17/02
Screen Intervals: 18 ft. to 23 ft bgs			Well Diameter:	<u>2 ]</u>	nch
Depth of Well (L*):	-	23_ft.	Depth to Water Before I	Development (L'):	15.4R.
Height of Water Column (L* - L*):		8 ft.			
Depth to Top of Sediment (L')		14ft	Sediment Thickness (I."	- 1.):	Na fi
Well Volume:		1.28 gal			
Total Volume Pumped:		46 gal			
Number of Well Volumes Pumped	(total volume p	umped/well volume);	46 gallons purged on 10	/17/02 0.1 W	t6 gallons per foot on a 2-Inch ell
	Moni	toring Well Sampl	e Data : Well RLP-	GW5	
	Temp	рН	Cond	Gallons Purged	
10/17/02 10/17/02	13.8	6.89	2620 2620	45 45.5	Slightly turbid Clear, Slightly turbid
10/17/02	13.7	6.91	2610	46	Clear
* Sample collection continued after v	vell development inc	ludes well development	purge volumes		
10/17/02 @ 1145					Sample Collected
		Litl	ıology		
0-2 feet bgs Waste re	ock materials				
2-23 feet bgs Purple r	pasted tailings, wet				
Draganial Ry	Da	ta.	Checked Rv		Date

### COPHE

Colorado Department of Public Health and Environment. 4300 Cherry Creek Drive South (1984), 1984, 1984, 1984.

## WELL DEVELOPMENT DATA AND SAMPLE FORM SUMMARY

Records Minagement Data

Project Number: Rivo Light Industrial Park Project Name. Rico Light Industrial Park Well Number: RLP-GW6 Well Location: Rico Light Industrial Park 8,800 msl Elevation : 10/17/02 Time / Date: Clear Skies, Partly Sunny 60°F Weather: 4-Inch Hollow Stem Auger Drilling Method: Slight Breeze Development Company: Kayenta Consulting 10/17/02 Date Development Completed: 10/17/02 Date Development Started: 2 Inch Well Diameter: Screen Intervals: 12 ft. to 17 ft bgs 25 ft. 30 ft Depth to Water Before Development (L'): Depth of Well (L*): 51 Height of Water Column (L. - L'): Sediment Thickness (L* - Li): Na_ft. 30A. Depth to Top of Sediment (L') 0.8 gal. Well Volume: 8 gal. Total Volume Pumped: 0.16 gallons per foot on a 2-Inch Well 8+ volumespurged on 10/17/02 Number of Well Volumes Pumped (total volume pumped/well volume): Monitoring Well Sample Data: Well RLP-GW6 Gallons Purged Observations pH Cond Temp Date 4000 Slightly turbid 6.49 13.1 10/17/02 Clear, Slightly turbid 3970 6.38 12.6 10/17/02 Clear 4110 6.42 10/17/02 13.1 Purged dry total of 8 times, Collected sample on 9th recharge Sample collection continued after well development includes wall development purge volumes Sample Collected 10/17/02@1645 Lithology Purple roasted tailings mixed with waste rock and river cobble 0-18 feet bgs Native Rock, Cobble 16-30 feet bgs Date Checked By Date Presented By

### CDPHE

Presented By

Colonido Department of Public Health and Environment 4300 Cherry Creek Drive South

### WELL DEVELOPMENT DATA AND SAMPLE FORM SUMMARY

Records Management Data

Date

Well Number: RLP-GW7		Well Location: Ric	o Light Industrial P	ark			
110-	10/17/02		Elevation		8,800 msl		
Time / Date:	4-Inch Hollow S	Charm Augus	Weather:		Clear Skic	s, Partly Sunny 60°F	
Drilling Method:			,, , ,		Slight Bro		
Development Company:	Kavenla Consul	ning	Date Development Comp	lated:	10/17/02		
Date Development Started:	10/17/02	-		ictou.	2 Inch		
Screen Intervals: 19 ft. to 24 ft bgs			Well Diameter:		2 111011		
Depth of Well (L**):		24_ft.	Depth to Water Before I	evelopment (L1):	_	19_6	
Height of Water Column (L* - L'):		511.					
Depth to Top of Sediment (Li)		24.0-	Sediment Thickness (L	- L'):	Na		
Well Volume:		0.8 gal.					
Total Volume Purnped:		35 gal.					
Number of Well Volumes Pumped	(total volume	oumped/well volume):	43+ volumes purged on	10/17/02	0.16 galle Well	ons per foot on a 2-Inch	
	Mon	itoring Well Sampl	le Data: Well RLP-	GW7			
Date	Тепр	рН	Cond	Gallons P	arged	Observations	
10/17/02	15.5 15.7	6.51 6.51	1679 1719	26 35		Slightly turbid Clear	
	480						
10/17/02	well development in	cludes well development	purge volumes	-			
	well development in	cludes well development	purge volumes	-		Sample Collected	
* Sample collection continued after	well development in		purge volumes	1		Sample Collected	

Checked By

Date

### CDPHE

Presented By

Colorado Department of Public Health and Environment, 4300 Cherry Cycek Drive South = Tkenver, CO 80246

### WELL DEVELOPMENT DATA AND SAMPLE FORM SUMMARY

Records Management Data

Date

Project Number: Rico Light Industrial Park Project Name: Rico Light Industrial Park Well Number: RLP-GW8 Well Location: Rico Light Industrial Park Elevation : 8,800 ms1 10/17/02 Time / Date: Weather: Clear Skies, Partly Sunny 60°F 4-Inch Hollow Stern Auger Drilling Method: Slight Breeze Development Company: Kayenta Consulting Date Development Completed: 10/17/02 10/17/02 Date Development Started: 2 Inch Well Diameter: Screen Intervals: 25 ft. to 30 ft bgs 30 ft. Depth to Water Before Development (L1): 25 ft. Depth of Well (L"): 5fL Height of Water Column (L" - L'): Sediment Thickness (L" - L'): Na ft. Depth to Top of Sediment (Li) 30 ft. 0.8 gal. Well Volume: 24 gal. Total Volume Pumped: 0.16 gallons per foot on a 2-inch Well 24+ volumes purged on 10/17/02 Number of Well Volumes Pumped (total volume pumped/well volume): Monitoring Well Sample Data: Well RLP-GW8 Gallons Purged Observations Cond Date Temp pHClear, Slightly turbid 2510 22 13.0 6.46 10/17/02 23 Clear, Slightly turbid 2520 6.58 10/17/02 12.9 Clear, Slightly turbid 24 6.64 2520 12.5 10/17/02 Sample collection continued after well development includes well development purge volumes Sample Collected 10/17/02 @ 1735 Lithology Fill material 0-1 feet bgs Red purple slimes, roasted tailings, saturated 1-24 feet bgs Native materials, river cobble 24 - 30 feet bgs

Checked By

Date

				CLIEN			LOG OF E	BORIN	IG NUN	IBER	MW-1[	)		
A=		)N	1		ntic Richfield Co	mpany	ARCHITE	CT-F	VGINE	R				-
			•		-Argentine Site -	OU01				ny: Bo	art Lo	ngyea	r	
SITE LOC	CATI	ON			, ii goilaine otto					O UNCO	VEINED CO	OMPRESS	IVE STR	ENGTH
									-	TONS/	2	3 4	5	_
n) NN(FT)			ANCE		5.500					PLASTIC LIMIT %	CON	ATER	LIQI LIMI	Т%
DEPTH(FT) ELEVATION(FT)	SAMPLE NO	SAMPLE TYPE	SAMPLE DISTANCE	OVERY	DESCR	RIPTION OF MATERIAL			UNIT DRY WT	10	20 STANE	30 4		
X	SAM	SAM	SAM	SUF	FACE ELEVATION +	8,811.0 Feet			LBS	⊗ 10		FRATION	BLOWS/( 0 50	FT)
		GB			approximately sand and 20%	sandy Cobbly GRAVEL (6 <5% cobble, 40% gravel, fines - fines moderately p	40% lastic -			10	ALS:			
	1	GB	I		subangular - ro	or larger - subrounded to ots to 5.0' or greater - dar edium dense and loose	rk brown			1				
5.0		GB		$ \otimes$				m	- 1	8	•			
- 1	2	GB								1				
		GB	Т	******	7.5' - Color cha	nges to brown 7.5YR 4/4	- less			<b>≱</b> 11				
	3	GB			cobbles		.000						3	
10.0		GB		-	Plant debris at	9.0' nk alluvium - sandy		Ш		11 &				
	4	GB			11.3 Black Organic	SILT (OL) - organic smell	-		=		-	1 -		
		GB		17.	· moderate plast	icity - decayed roots layey Silty Sandy GRAVE	/				XOA			+
	5	GB	П	1/2	(GM-GC) with (	Cobbles to 4.0" - Approximately 2015	mately							1
15.0		GB	Ü	14	50% gravel and	d cobbles, 25% sand and derately plastic - predom	25%		- 1					53° ⊗
	6	GB	П	175	subangular to s	subrounded - black 5YR 2	2.5/1 -	= 3						4
		CD		1/	dense to extrer	nely dense								T
		GB		1/										1
20.0			1	-2/	3		8	Ξ.,						i5€ ⊗
	7	GB	Ш	1.7	3			Ξű					- 2	/
				1	4		8	Ξ,					Z	
		GB		1/		anges to strong brown 7. e predom, subrounded	5YR 4/6 -			i				
25.0			1	13	graveis become	e predom. Subrodinaca	(3)			•		34		
	8	GB		12/	3			7						
	F			1.7	2								1	
		GB		1/9	4									
30.0				1/	3			1						111
31.5	9	GB		2.7	silty sand	tion in gravel size at 30.5	- fine		_					
					well: 0.010" P\	by: A. Jewell D. ied as 2.0" diameter moni VC screen 15.0-25.0' with pack 14.0-27.0' - 15.0' SC	bottom							
					PVC riser with	flush mounted cover.	10							
	The	stra	tific	cation li	nes represent the appr	oximate boundary lines b	etween soil typ	es: i	n situ,	the transi	tion may	be grad	lual.	
NORTHING 1387829						BORING STARTED 9/29/11		AEC	OM OFFI	CE D				
EASTING BO						BORING COMPLETED 9/30/11	ENTERED BY SHEET NO OF							
WL RIG/FOREMAN APP'D BY AECOM JOB NO														
7.0' WD						MINI-SONIC C100/D	. Cerventes		EEE			601577	757	

				CL	JENT	LOG OF	BORING N	UMBER MW-1S	
A -		14		A	tlantic Richfield Company				
A	U	JN	1		ROJECT NAME		ECT-ENGIN		
				F	Rico-Argentine Site - OU01	Drillin	ng Comp	oany: Boart Longyear	
SITE LO	CATI	NC						-O-UNCONFINED COMPRESSIVE STRENGTH TONS/FT. ² 2 3 4 5	
				T				+ +	
DEPTH(FT) ELEVATION(FT)			SAMPLE DISTANCE	П				LIMIT % CONTENT % LIMIT %	
DEPTH(FT) ELEVATION	o	YPE	STA		DESCRIPTION OF	MATERIAL	¥	×	
EVA	Ž Щ	i i	Щ.	ER.			JRY T	10 20 30 40 50	
	SAMPLE NO.	SAMPLE TYPE	MP	RECOVERY			UNIT DRY WT	STANDARD  STANDARD  PENETRATION BLOWS/(FT)	
	Ś	Ś	S	2	SURFACE ELEVATION +8,811.1 Fee  No logging - No sampling	t	تد	10 20 30 40 50	
				8	XXX				
5.0					Boring completed as 2.0" owell: 0.010" PVC screen 4 and sand pack 3.0-10.0' - with flush mounted cover.	.0-9.0' with bottom plug			
	The	etro	Hiffic	2414	on lines represent the approximate boo	Indany lines between soil to	nes: in eiti	u the transition may be gradual	
NORTHIN	IG.		_		BORING STA	ARTED	AECOM OF		
EASTING		1387				9/30/11 MPLETED 9/30/11		Deliver	
		2267	945	5			ENTERED S.		
WL					RIG/FOREM/ MINI-S	ONIC C100/D. Cerventes			

				CLIEN	⊤ ntic Richfield (	Company	LOG OF	BORI	NG NUI	MBER	MW-40	D/4DR	
A		DN	1		ECT NAME	oniparry	ARCHIT	ECT-E	NGINE	ER			
				Rico	-Argentine Sit	e - OU01	Drillin	ng C	ompa	ny: Bo	art Lo	ngyea	ar
SITE LO	CATI	ON								-O-UNCO TONS	NFINED CO FT. ² 2	OMPRESS 3	SIVE STREE
DEPTH(FT) ELEVATION(FT)	SAMPLE NO	SAMPLE TYPE	LE DISTANCE	RECOVERY	DES	CRIPTION OF MATERIAL			UNIT DRY WT LBS /FT ³	PLASTIC LIMIT % ————————————————————————————————————		+	LIQUI LIMIT — — A
X	SAME	SAME	SAMPLE	SUF	RFACE ELEVATION	+8.816.6 Feet			UNIT LBS/	⊗		RATION	BLOWS/(F
. 7	0)	0)	3)	XXX	FILL - Clave	y Cobbly Sandy GRAVEL (Go	2)-			-	A	1	30
		GB			approximate	ly 50% gravel and cobbles, 3 yey fines - moderately plastic	0% sand					22	
	,	05	T	-	predom. sub	angular to angular gravel - da	rk 📗					⊗33	
	1	GB	Ц	-	Becoming ve	n 5YR 3/3 - dense to loose - ery cobbly (GW-GC) - cobbles	up to						1
5.0		GB	1	-	8 6.0" - up to 3	80% cobble content - Becomint - color change to dark reddis	ng	П		•			1
	2	GB	Ш		2.5YR 3/1	. John ondrigo to dank roadi	g j				1		
		GB		-88	8						\$22	1	
	3	GB			8						/		
10.0		GB			\$					® ′			
	4	GB			Possible fill	colluvium contact at 11.0' - cla	avev						
					cobbly sand	y gravel (GC) - approximately	50%			1.	\.		
		GB			🕅 clav fines - c	sand and 20% moderate plas obbles to 6.0" or larger - pred	lom.			1	N		
15.0					💸 subangular t	to angular gravel - reddish brown				V	24		
.0.0	5	GB	T		7 5YR 3/4 - Large green	stone boulder in hole from 12	.0-16.0'			K	X 66 7	2	
			1	-88	Transitions t 12.5-15.0'	o yellowish red 7.5YR 4/6 fro	m			/		1	
		GB		15.0-20.0' - Poor recovery - possible voids								1	
		30		$\checkmark$	19.5	10.0' southwest - renamed N					1	N	40
20.0	c	CE	T	1/1	ALLUVIUM (GM-GC) - s	Cobbly Clayey Silty Sandy Copproximately 25% cobbles, 3	GRAVEL 0%				•		*
	6	GB	Ш	-1/2	gravel, 30%	sand and 15% clay/silt fines	cobbles						A
				1/2		oredom, rounded to subround R 4/4 - dense to extremely de		Ξ.					1
		GB		1.1	3								7
25.0			-	-3/	slight organi	<5% fines, 30% sand, 60% gi c content - black (GW)	515						8
	7	GB		1/	25.0-30.0' -	Core sample mixed - become ximately 27.0' - includes pred							1
				1/2	angular to s	ubangular gravels - predom. s						1	
				Ly	(GW)		1					, ,	
30.0		GB		13%	2						1		
				1/9	gravel with o	o predom. subrounded to rou clay fines up to 15% from 30.0							
			T	1	(32.0 (GW-GC)			12 (1) 14 (1)		8		-	+-+
33.5	8	GB	Ш	34	33.5 scattered co	- fine to medium Silty SAND ( arse grained Sand and Grave	el up to	V-1					
					1.0" - suban 5YR 5/8	gular to subrounded - yellowi	sh red						
					End of Borin								
					Boring logge Boring com	ed by: A. Jewell bleted as 2 0" diameter monito	oring						
					well: 0.010"	PVC screen 21.0-31.0' with I	oottom						
						nd pack 21.0-32.0' - 21.0' SCI ith flush mounted cover.	140				- 1		
	The	stra	tific	ation li	nes represent the ap	oproximate boundary lines be	tween soil ty	pes:	n situ,	the transi	tion may	be gra	dual.
NORTHING			=			BORING STARTED		-	OM OFF	105	enver		
EASTING		1387	83	7		10/5/11 BORING COMPLETED 10/5/11	_	ENT	ERED B		SHEET NO	) OF	
	_	2268	322	2				_	ERED B' SJI D BY		AECOM JC	1	_1
WL			D		RIG/FOREMAN MINI-SONIC C100/D.	Cerventes	APP	D BY		MECOM JC	60157	757	

			Ī		LIENT	LOG OF	BORING	NUN	MBER MW-4S
A	C	)/	A	F	Atlantic Richfield Company ROJECT NAME	ARCHITE	OT EN	ZINE	ED
	-	737			ROJECT NAME  Rico-Argentine Site - OU01				nny: Boart Longyear
SITE LO	CATI	ONL		r	Rico-Argentine Site - 0001	Drillin	y Col	IIPa	UNCONFINED COMPRESSIVE STRENGT
SHELO	CAII	OIN							-O-UNCONFINED COMPRESSIVE STRENGTI TONS/FT. ² 1 2 3 4 5
DEPTH(FT) ELEVATION(FT)		ш	SAMPLE DISTANCE		DESCRIPTION OF M	ATEDIAL			PLASTIC WATER LIQUID LIMIT % CONTENT % LIMIT %
rh(F /ATI(	9	TYP	DIST	≿	DESCRIPTION OF W	ATERIAL	5		10 20 30 40 50
DEPTH(FT) ELEVATION	SAMPLE NO	SAMPLE TYPE	PLE	RECOVERY			INIT DRY W	LBS /FT	STANDARD
X	SAM	SAN	SAN	REG	SURFACE ELEVATION +8,817_1 Feet		Z	LBS	
	9.77			8	No logging - No sampling			- 1	
10.0				CANNAR COUNTY CONTRACTOR AND A STATE OF THE	19.0  Boring completed as 2.0" diar well: Total depth 19.0' - 0.010	neter monitoring			
NORTHING	G	stra			8.0-18.0' with bottom plug and 8.0-19.0' - 8.0' SCH 40 PVC r mounted cover.  on lines represent the approximate bounce boring starti	d sand pack iser with flush lary lines between soil typ	AECON	/ OFF	ICE Denver
EASTING					BORING COMPL	ETED	ENTER	ED B	SHEET NO OF
WL	2268225			5	RIG/FOREMAN	10/5/11 NC C100/D. Cerventes	5/11 SJH 1 1		
					MINI-SON	IIC C100/D. Cerventes		EEC	60157757

				LIENT Atlantic Richfield Company	LOG OF BOF	VIIVO IVO	WIDER	IV	W-5D	,		
AEC	O/	И	1	ROJECT NAME	ARCHITECT-	ENGINE	EER					
			- 11	Rico-Argentine Site - OU01	Drilling (	Comp	any:	Boa	rt Lo	ngyea	ır	
SITE LOCA	TION		-	<u> </u>			OU	NCONF ONS/FT	INED CO	MPRESS	IVE STR	ENG
	T		Ι					STIC	-	TER	LIQ	
DEPTH(FT) ELEVATION(FT) PLE NO	l u	I F	RECOVERY	DESCRIPTION OF MATERIAL		F	LIM	IT % — -		TENT %		IT %
ELEVATION SAMPLE NO	SAMPI E TYPE	1 0	VERY			UNIT DRY WT LBS /FT 3		10	-	+	0 5	0
SAMP	OMAC	CANAGO	RECO	SURFACE ELEVATION +8,831.1 Feet		UNIT (		⊗ 10		RATION		(FT)
		1		PDF EMBANKMENT FILL - Silty Sandy ( (GW) - subangular to subrounded - medi	GRAVEL um							
	G	В		dense - brown 7.5 YR 4/4 - moist	- 11				18			
1	G	В		3.5 FILL - Oxidized material - Clayey SAND (	(SC) -			7				
5.0	G	В		low plasticity fines - dark reddish brown 2 2.5/3 - loose - moist	2.5YR			\$13				
2	G	В		XX 6.0	nd silt			7				
	G	В		FILL - Calcines - Silty fine SAND (SP) an sized - estimated <10% fines - reddish pumunsell) - medium dense to very loose -	urple (no			Ø1:				
3	G	В		mandan, manam dana ta vary 1000c				1				
10.0	G	В						<b>1</b> 1				
4	G	В					-,					
							-1					
	G	В					1					
15.0	+	+	V	Becoming wet and black/reddish purple b	pelow		\$					
5	G	В	-	15.0'			1					
				Becomes silty with low plasticity fines at estimated up to 30% silt	17.0;' -		1					
A	G	В		<b>****</b>			1					
20.0		1					11 &					
6	G	В		22.0			×					
				Organic SILT (ML-OL) - probable overba deposits - decayed plant fibers - trace fin	e sand			`				
25.0	G	B		and thin 1/8" calcine layers - low plasticit greenish black - moist to wet					*	32		
<b>25.0</b> 7	G	В		ALLUVIUM - Silty Sandy Cobbly GRAVE color varies - dense - saturated	L (GM) -	3		'		32 ⊗		
		1	-	Clayey sandy cobbly gravel (GC) - fines moderately plastic - very dark gray 7.5YF	R 3/1 -	100			1			
	G	В		predom. subangular with some subround Transition to silt fines (GW-GM) - reddish	n brown					Ni		
30.0				5YR 4/4 Very dark gray 7.5YR 3/1 - becomes presubrounded	dom.					36		
8	3 G	В		Lower fines content (<10%) (GW) - dark brown 10YR 4/6	yellowish					/ /		
				Increased fines, approximately 15% (GW yellowish brown 10YR 5/8 - medium der	V-GM) -				1			
	G	В		<i>//</i> 2					1			
35.0				34.5 1.1.1.				₩ ²	4-1-			
	1			cont	inued							

				C	LIENT	LC	OG OF BOR	ING NU	MBER	MW-	-5D		
A*		74	4		Atlantic Richfield Company								
A.		JN			ROJECT NAME	1	RCHITECT-						
					Rico-Argentine Site - OU01		Orilling C	omp	any: B	oart	Longy	ear	
SITE L	OCAT	ION							-O-UNCC	/FT.			STRENGTH
-									1	2	3	4	5
F	-		Įų,						PLASTIC		WATER		LIQUID
DEPTH(FT)	5	ш	SAMPLE DISTANCE		DESCRIPTION OF	ΜΑΤΕΡΙΔΙ			LIMIT %		CONTENT	% — — –	LIMIT % - <del>-</del> ∕∆
TH(F	2	ΤYP	DIST	K	DESCRIPTION OF	MATERIAL		> ~	10	20	30	40	50
DEPTH(FT)	SAMPLE NO	SAMPLE TYPE	PLE	RECOVERY				UNIT DRY WT LBS /FT 3		ST	ANDARD	410	12
X	SAM	SAM	SAM	REC	SURFACE ELEVATION +8,831.1 Feet		Continued)	UNI	⊗ 10	PE 20	NETRATIO 30	ON BLO 40	WS/(FT) 50
7	9	GB	T		ALLUVIUM - Gravelly Silty :	SAND (SM) -	574						
36.5	9	GB			approximately 10% gravel, - red 2.5YR 5/6 - wet - med	15% silt and 75% sar ium dense	nd			-			
					End of Boring Boring logged by: A. Jewel Casing: 5.5" I.D. Boring completed as 2.0" di well: 0.010" PVC screen 17								
					well: 0.010" PVC screen 11 plug and sand pack 10.0-21 riser with flush mounted cov	l.0' - 11.0' SCH 40PV	/C						
												ı	
		e stra	tifi	cat	ion lines represent the approximate bou					ition n	nay be (	gradua	l _e
NORTH EASTIN WL	ING	138	837	5	BORING STAI	10/9/11		COM OFF		Denve			
EASTIN	IG	226	781	4		IPLETED 10/9/11		TERED B	Y H	SHEET	2		2
WL			' W		RIG/FOREMA	N ONIC C100/D. Cerver	ventes APP'D BY		D	AECOM JOB NO 60157757			

				CLIEN			LOG OF I	BORING N	UMBER	M	W-58	3	
A	CC	)/	4	Atla	ntic Richfield Co	ompany	ARCHITE	CT-ENGIN	JEER				
		4			o-Argentine Site	- OU01		g Com	anv:	Boa	rt Lo	ngyea	ır
SITE LO	CATI	NC							0	JNCONF FONS/FT	NED CC	MPRESS	SIVE STRENGT
-			T	Ť						1	1	3 4	4 5
Œ			Š	1						ASTIC		TER FENT %	LIQUID LIMIT %
(FT)	0	/PE	STAN		DESC	RIPTION OF MATERIAL		¥		×		• ·	<del></del>
DEPTH(FT) ELEVATION(FT)	SAMPLE NO	SAMPLE TYPE	SAMPLE DISTANCE	SUF				DRY FT 3	-	10	20 STAND	-	0 50
X	SAME	SAME	SAME	SUF	RFACE ELEVATION	+8,831_1 Feet		UNIT DRY WT		⊗ 10	PENET	RATION	BLOWS/(FT) 0 50
				***	No logging - N	lo sampling							
10.0 15.0 20.0					11 0-21 0' with	eted as 2.0" diameter monit pth 22.0' - 0.010" PVC scre n bottom plug and sand par 1.0' SCH 40 PVC riser with rr.	:k						
	The	stra	tifica	ation li	nes represent the app	roximate boundary lines be	etween soil typ			ransitio	n may	be grad	dual.
NORTHIN	G	1388	370			BORING STARTED 10/9/11		AECOM O		Der	iver		
EASTING		2267				BORING COMPLETED 10/10/11		ENTERED S	BY <b>JH</b>	SH	EET NO.	1 OF	1
WL						RIG/FOREMAN MINI-SONIC C100/D.	Cerventes	APP'D BY	ED	AE	сом јо	B NO <b>60157</b> 7	757



				С	LIENT	LOG OF E	30RI	NG NU	MBER M	W-6D	
A		14	4		Atlantic Richfield Company						
استام		///	1	1	ROJECT NAME	ARCHITE				41	
ITE LO	CATI	ON			Rico-Argentine Site - OU01	Drilling	g C	ompa	any: Boal	rt Longyea	r IVE STRENGT
II E LO	CAH	ON							TONS/FT.	2 3 4	5
							-		PLASTIC	WATER	LIQUID
ELEVATION(FT)		Ä	SAMPLE DISTANCE	١	DESCRIPTION OF MATERIA	L		E	LIMIT %	CONTENT %	LIMIT %
EVAT	2	<u> </u>	E DIS	ERY	2			λ γ γ	10 :	20 30 4	0 50
ᇳ	SAMPLE NO	SAMPLE TYPE	MPL	RECOVERY				UNIT DRY WT LBS./FT 3	8	STANDARD PENETRATION I	BLOWS//FT)
	& A	S, A	SA	꿆	SURFACE ELEVATION +8,830.6 Feet	(Continu	ed)	5 9		PENETRATION 1 20 30 354	0 50
	10	GB			ALLUVIUM - Clayey Gravelly Cobbly 5 approximately 40% sand, 30% cobble and 30% moderately plastic clay - cob	s and gravel bles to 6.0"				. 1	711
					or larger - predom. subrounded to ang gray 7.5YR 4/1 - dense - wet 31.5' - Becomes Silty Sandy GRAVEL					1	
		GB			approx. 60% gravel, 30% sand and 10 predom. subrounded to subangular - c	1% fines - lark brown				1	
5.0	11	CB	Н		Becomes strong brown 7.5YR 4/6 at 3	4.0'				30	
	11	36.5  ALLUVIUM - Silty fine SAND (SP) - <5% silt									
	GB 37.5 medium grain sand - dark yellowish								i		
0.0			ALLUVIUM - Sandy GRAVEL (GW) - subangu to subrounded - approximately 60% gravel, 40 sand and <3% silt - gravel to 3.0" - well graded						4		
1.0	40	O.D.	T		subangular to subrounded - wet	///			\$		
1.5	12	GB	Ш	41.5 Core sample from 37.5-40.0' is probably loosened, mixed and sorted due to multiple							
				attempts to clean hole (flapper bit)  ALLUVIUM - Silty fine SAND (SM) - u							
				- low plastic fines - strong brown 2.5Yl	R 3/4 -						
			П		Becomes dark reddish brown 12.5YR End of Boring	3/4 at 41.0'					
					Boring logged by: A. Jewell Casing: 5.5" I.D.						
					Boring completed as 2.0" diameter mo well: 0.010" PVC screen 30.0-40.0' w	onitoring					
					plug and sand pack 29.0-41.5' - 30.0' riser with flush mounted cover.						
					riser with lidsh mounted cover.						
		stra	tific	ati	on lines represent the approximate boundary lines	between soil type	_		lor.		ual.
STING	,	1388	3160	3	BORING STARTED 10/11/1 BORING COMPLETED			OM OFF	Deli	EET NO OF	
		2268			10/11/1 RIG/FOREMAN	- 19			AEC	2 COM JOB NO	2
L		23.7	5' V	۷D	MINI-SONIC C100	/D. Cerventes APP'D BY AECOM JOB NO 60157757			57		

			CLIENT		ichfield	Cor	npanv			LOG OI	FBOR	ING NUI	MBER	MV	/-6S		
AEC			PROJE	CT NAM	E							ENGINE					
SITE LOCAT	1401		Rico	-Arge	ntine Si	te -	OU01			Drilli	ng C	ompa	any: E	CONFINI	Long	gyear	• VE STRENG
SITE LOCAT	ION												TON	NS/FT. ²	3	4	VE STRENC
DEPTH(FT)  ELEVATION(FT)  SAMPLE NO	SAMPLE TYPE	SAMPLE DISTANCE			DE	SCR	IPTION C	OF MATE	RIAL			UNIT DRY WT LBS/FT ³	PLAST LIMIT X	20	-	NT % — — — 40	LIQUID LIMIT %
THE NEW YEAR	AMPL	AMPL	SIID	EACE E	LEVATION	<b>+</b> 8	8307 Fo	net .			-	UNIT DRY LBS /FT ³	8	Р	TANDAF	ATION B	LOWS/(FT)
00	0)	() L	3010		lo logging							7.7	10	20	30	40	50
5.0					Gee MW-6D												
20.0																	
28.0				T t	Boring com Fotal depth pottom plug PVC riser v	28.0 and	0' - 0.010'' d sand pa	' PVC scr ck 16.0-2	een 17.0-2 8.0' - 17.0	27.0' with							
		1	Alau II				avimet- b		inno hatiii	on sall 4	unco:	in city	the tre-	noition	mayb	o arad	ual
ORTHING	e stra	TITIC	ition lin	es repr	esent the a	appro	BORING ST		ines detwe	en soil t	_	In situ,				e gradi	udi.
ASTING	1388	3166						10.	11/11		_			Denv	T NO	OF	
VL	2268	3153				-	BORING CO		11/11			TERED B' SJI P'D BY	i			1	1
,_							MINI	SONIC C	100/D. Ce	ventes	s			57			

	-				LIENT Atlantic Richfield Company	LOG OF BOR	NG NUM	MBER MW-102
AE(		W			ROJECT NAME	ARCHITECT-I		
				F	Rico - Argentine Mine Site	Andersor	<b>Engi</b>	ineering Company, Inc.
SITE LOC						2		-O-UNCONFINED COMPRESSIVE STRENGT TONS/FT. ² 1 2 3 4 5
Rico	-Ar	gen	tir	1e				1 2 3 4 5
DEPTH(FT) ELEVATION(FT)	SAMPLE NO.	SAMPLE TYPE	DESCRIPTION OF MATERIAL  DESCRIPTION OF MATERIAL  SURFACE ELEVATION +8,841.3 Feet			UNIT DRY WT. LBS./FT.³	PLASTIC WATER LIQUID LIMIT % CONTENT % LIMIT %	
	SAME	SAME	SAME	E E	SURFACE FLEVATION +8.841.3 Feet		BS./	<ul> <li>⊗ PENETRATION BLOWS/(FT)</li> <li>10 20 30 40 50</li> </ul>
	O	0)	(3)	LL.	Note:	100	-	10 20 30 40 50
5.0 10.0 20.0 25.0					Offset boring 75' NNE from SSR-102 No soil samples obtained	ied		
The stra	atificat	lon lin	les r	ерге	esent the approximate boundary lines between soil types: in silu, the transit	ion may be gradual.	AECO	OM JOB NO. 60239818 SHEET NO. OF

A = C	<b>~</b> /	14			c Richfield Con	npany	DRAI	FT			VIVV-10	02		
AEC		V		ROJECT		Sito	ARCHIT			R neering	Comm	any I	nc	
SITE LOCAT	ION	-	L	KICO - /	Argentine Mine	Site	Ande	ะเรงก	⊏⊓gl	UNCON	FINED C	OMPRESS	SIVE STR	ENGTH
Rico-A		enti	ne							TONS/F	2	3	4	5
DEPTH(FT) ELEVATION(FT) PLE NO.		SAMPLE DISTANCE			PEGGE	NOTION OF MATERIA				PLASTIC LIMIT %		ATER		UID IT %
DEPTH(FT) ELEVATION IPLE NO.	TYPE	DIST	RY		DESCR	RIPTION OF MATERIA	\L		Y WT	10	20	30		50
DEPTH(F ELEVATI	SAMPLE TYPE	MPLE	COVE						UNIT DRY WT.	8	STAN	DARD	BLOWS/	(ET)
× S	AS AS	SA	RE	SURFA	CE ELEVATION +8 Note:	3,841.3 Feet	(Conti	nued)	5 9	10	20			0
32.0				32.0		5' NNE from SSR-102 s obtained		Ħ						
					Blank drilled wi plug in lead end in borehole with No soil sample:	th 4-1/4" ID HSA to 32 d of 4 1/4" ID HSA. Pin tip at 31 feet. s obtained.	feet with wood ezometer install	led						
Ть	le st	ratifi	Cat	ion lines	rangeant the appr	oximate boundary line	s hetween soil to	VD65.	in eitu	the transit	ion ma	v be are	adual	
NORTHING		_	_		represent the appr	BORING STARTED			OM OFF	ICE		y be gra	auual.	
EASTING		8848				11/11/ BORING COMPLETED 11/12/			ERED B		HEET NO	0. 0	F _	
WL	220	6823	0.4	92		RIG/FOREMAN			DC D BY		ECOM JO	2 OB NO.	2	
	W.	L. @	23	.5'		CME-85/Regg	ie Castro					60239	818	

ΑΞ		<b>)</b> //	4	1	IENT tlantic Richfield Company	DRAFT		11111 202	
<b></b>	-	111			ROJECT NAME	ARCHITECT-E			
TELOC	7AT1	ONI		L	lico - Argentine Mine Site	Andersor	ı =ngı	ineering Company, Inc.	G7
TE LOC			ntir	10				UNCONFINED COMPRESSIVE STRENG TONS/FT 2 3 4 5	- 1
		351						1 1 1	
Œ			1CE					PLASTIC WATER LIQUID	
ELEVATION(FT)		F F	SAMPLE DISTANCE		DESCRIPTION OF MATERIAL		Ę.	×	
ELEVATION	E N		EDI	/ERY			RY V	10 20 30 40 50	_
	SAMPLE NO.	SAMPLE TYPE	MPL	RECOVERY			UNIT DRY WT.	STANDARD  STANDARD  PENETRATION BLOWS/(FT.	)
	Ś	Ś	/S	N.	SURFACE ELEVATION +8,859.2 Feet  FILL: Well graded gravel, some sand, little	sile .	5 5	10 20 30 40 50	_
	1	SON			57% gravel, 30% sand, 13% fines - 10YR3, (FILL: GM)	2 -			
					Clayey sand and gravel, some silt - 35% gr 40% fine to coarse sand, 25% fines - 7.5YF (SC)	avel, R4/3			
5.0	2,3	SON		l		- 11			
				T	Well graded clayey gravel and sand, little s 7/5YR4/3 (GW-GC)	lt -			_
					9.0			•	
0,0	3,4	SON		1	Clayey sand and gravel, some silt - 35% gr 40% fine to coarse sand, 25% fines - 7.5YF (SC)	84/3			
5.0	5	SON		1	Well graded sand, some gravel, little silt - gravel, 71% fine to coarse sand, 9.3% silt - 10YR4/3 (SW-SM)	20%			
0.0	6	SON							
5.0	7	SON	- New		Well graded sand, some gravel, little silt - gravel, 71% fine to coarse sand, 9.3% silt - 10YR4/4 (SW-SM)	20%			
0.0								1-1-1-1-1	
					continu	ea			

					LIENT <b>Atlantic Richfield Co</b> n	прапу	DRAF		NG NUN	VREK	<b>VIVV-2</b> 0	2	
A	CC	N		P	ROJECT NAME		ARCHIT	ECT-E			_		
SITE LO	CATIC	147			Rico - Argentine Mine	Site	Ande	rson	Engi	neering	Compa	any, Ir	IC.
	o-Ar		ntii	ne						TONS/F	T. ²	3	IVE STRENGTH 4 5
DEPTH(FT) ELEVATION(FT)			SAMPLE DISTANCE							PLASTIC LIMIT %	CON	ATER TENT %	LIQUID LIMIT %
DEPTH(FT) ELEVATION	ŏ.	TYPE	DIST	Z	DESCI	RIPTION OF MATERIAL			Y WT	10		30 4	10 50
DEP	SAMPLE NO.	SAMPLE TYPE	APLE	SOVE					UNIT DRY WT. LBSJFT.³	0	STAND		1
$\times$	SA	SAI	SA	NE.	SURFACE ELEVATION +		(Contir	nued)	LB GN	10	20	30 4	BLOWS/(FT) 10 50
35.0	8	SON			well graded sa gravel, 71% fin 10YR4/4 (SW-	ind, some gravel, little silt - 20 e to coarse sand, 9.3% silt - SM)	76						
			i		Blind Drilling			E					
		RB											
38.8			-	-	38.8 End of boring a	at 38.8 ft. Boring advanced to	35.5	E.					
	The	stra	tific	ati	on lines represent the appr	oximate boundary lines betwe	en soil ty	pes: i	in situ,	the transiti	ion may	be grad	dual.
NORTHIN	G	1388	990	.64	9	BORING STARTED 11/8/12		AEC	OM OFF	ICE De	enver		
EASTING		2268				BORING COMPLETED 11/11/12		ENT	ERED B'	Y S	HEET NO.	2 OF	2
WL						RIG/FOREMAN	ula K!	APP	D BY		ECOM JO	B NO.	
		٧٧.L.	@	ZZ.	5' W.D.	AMS Compact Sonic 10-C/K	yre King					602398	10

	0	М	- 1	LIENT Atlantic Richfield Company ROJECT NAME	LOG OF BOR			N	SR1			
·		7 H		Rico-Argentine Site - OU01	Drilling C			Ros	rt I o	กลงคร	ar	
E LOÇAT		J	1	NCO-Argentine Site - COUT	Drining C	omp	OU	NCONF	INED CC	MPRES	SIVE STI	RENGTH
E LOÇAI	101	٧					T	ONS/F1	2	3		5
							PLA	STIC	10/0	TER	110	QUID
ELEVATION(FT) PLE NO		SAMPLE LIPE					LIM	IT %	CONT	FENT %	LIN	IIT %
o o	Ç	AT A		DESCRIPTION OF MATERIAL		¥		<		<b>-</b>		A
N Z	É	- C	VER.			DRY T ³	1	0	+	30 4	40	50
ELEVAT SAMPLE NO	TOYT TIGHT	MP MP	RECOVERY			UNIT DRY	(	3	STAND.	ARD RATION	BLOWS	/(FT)
Ŝ	(	n u	3 2	SURFACE ELEVATION +8,861.5 Feet  FILL - Silty GRAVEL (GM) - angular rock fr	agments to 5"	2 2	1	0	20	30	40	50
1	S	s	11	minus - moist - brown (waste rock)	agmenta to 5		J = 1					
	+	₩	۲									
	L					h				1		
	P	A		<b>XX</b>								
.0	L		L,	<b>XX</b>								
	S	s		\$\times_5.5 \\ Clayey SILT with trace coarse to fine Sand	and Gravel 3"	-	-		+	=	43 Ø	
	1		1	minus (ML) - dense - moist - brown				•			/	
										1		
7		Α								1		
7									12	1		
0.0				9.5 Silty GRAVEL (GM) - subrounded 3" minu	s - drv -	1		-	1			
	1		T	medium dense - gray			}		9			
3	5	S	Ц	%X				•>	< −A			
		TI)		12.0 Same with increasing clay		-	-			1		-
		110		Silty CLAY (CL) - with trace angular gravel 1" minus and cobbles 4" minus - extremely	dense to					1		
-	P	'A		medium dense - moist	401100 10						1	
	И.											1
0.0	+	-	+									
4	S	s		>50 blows 6-12" at 15 5' (cobble in CL)							1	1
	+	7						•				-
-											-	
	F	A								3	7	
				Decrease angular and subrounded gravel	cobble size				1	1	1	
0.0	+	-	+					(8				
5	S	s		Increase in angular gravel fragments					8			
	+	-19	+	21.5 Very Silty GRAVEL (GM) – angular and sult	prounded up to				1		+	
			Т	2-3" minus - moist - brown				2		1		
	P	PΑ		83								
											1	
5.0	4			25.0	(01)	-		-				>50/6
6	S	s		25.5 Silty CLAY, trace pebble Gravel and Sand extremely dense - moist - brown	(CL) -	1		T	1		1	1
	+		4	/./	1	/		9	1		1	
				>50 blows 0-6" at 25.0' (cobbles)  Very Silty GRAVEL (GM) - angular - cobble	A" minus			1		3		
	-	A		moist - brown	a 7 minus -			1				
		^\		162				1	1			
0.0				7 29.5				1	/			
				continu	ied	F 5						
							111					
			4			-11-		NO 50157	-	_	-	

	- 1	LIENT Atlantic Richfield Company	LOG OF BOR	1140 140	MDCI	INS	SR1			- 1
<b>AECO</b> A	<b>4</b> H	ROJECT NAME	ARCHITECT-I	ENGINE	ER					
		Rico-Argentine Site - OU01	Drilling C		anv:	Boar	t Lor	ngyea	r	
ITE LOCATION	-		1		0.1	INCONFI	NED CO	MPRESS	IVE STR	ENGTH
					- Т	ONS/FT.	2	3 4		- 1
ELEVATION(FT) PLE NO PLE TYPE	SAMPLE DISTANCE RECOVERY	DESCRIPTION OF MATERIAL		MT	LIM	STIC IIT % ——		TER ENT %	LIQ LIMI	T %
EVA.	E DI:			-3 × √		10 2	0 3	30 4	0 5	0
ELEVATION SAMPLE NO	MPLE DIS			UNIT DRY WT LBS /FT 3			STANDA	ARD RATION I	BI OWE	(ET)
S S S	SAN	SURFACE ELEVATION +8,861.5 Feet	(Continued)	E 5		10 2		RATION I		
7 SS		Clayey GRAVEL (GC) - angular to subrour 31.0 6" minus - medium dense - moist - brown	nded cobbles	7		14				
	11	31.5 0.5' section of Sandy CLAY (SC)					1			
PA	Ţ	Silty GRAVEL (GM) - mostly angular 2" mi dense - moist - wet at 34 0'	nus - very					1	1	* '
8 SS		7.7							- 11	
	11	36.5 Loose and flowing at 36 0-37.0'								
		Well graded GRAVEL, trace Silt (GW) - me subangular 2" minus - extremely dense - w	ostly /et - dark							
PA		brown Increasing silt								
		increasing sin								
0.0	+								) _ [][	
9 SS		Less gravel, more silt, with trace clay - sub	rounded 3"							
	1	42 0 minus				<b>&gt;</b> ×	Δ			
		Clayey GRAVEL (GC) - subrounded cobbl wet but much less water	es 5" minus -							
15.0 PA		45.0 45.01 (1) (1)								
		at TD of hole rather than 2 feet above TD	/							
		Well graded GRAVEL with Silt (GW) - sub	rounded							
	1	cobbles up to 6" minus - striated cobbles - dense - wet	extremely							
10 SS										
		0								
0.0		6								
PA		6 51.0								-41
		Poorly sorted SAND (SP), fine grained Sal 52.0	nd - wet							
44 60		% 0 52.5 Well graded SAND (SW), fine to coarse size	ze - very dense							
11 SS		- wet 53.5 Well graded GRAVEL (GW) - up to 1" min	is - wet							
		Clayey GRAVEL (GC) - 1" minus gravel - 1	wet - well	-			-	-		
55.0		rounded	/							,
PA		55.5 Gravelly CLAY (GC) - wet - below boulder Clayey GRAVEL (GC) - angular and subro							7 7 7	1
		- extremely dense - wet							- 78	<b>₹50/6</b> "
40 00		57.5	uhanaulas							5)
12 SS		Silty GRAVEL (GM) - mostly angular and s 3-4" minus - moist	supangular							
0.0	++-	XXI								
		contin	uea							
	1 1									

**Atlantic Richfield Company AECOM** ARCHITECT-ENGINEER PROJECT NAME **Drilling Company: Boart Longyear** Rico-Argentine Site - OU01 -O-UNCONFINED COMPRESSIVE STRENGTH TONS/FT 2 3 4 5 SITE LOCATION PLASTIC WATER LIQUID ELEVATION(FT) SAMPLE DISTANCE LIMIT % CONTENT % LIMIT % DEPTH(FT)  $\times$  --------SAMPLE TYPE **DESCRIPTION OF MATERIAL** UNIT DRY WT LBS./FT 3 SAMPLE NO 10 30 20 STANDARD ⊗ 10 PENETRATION BLOWS/(FT) 20 30 40 50 SURFACE ELEVATION +8,861_5 Feet (Continued) Poorly sorted SAND (SP) - fine grained 0 ... 62.0 Well sorted GRAVEL (GW) 62.0 End of Boring Boring logged by: L. Beem Casing: 7.0" I.D. FS_DATATEMPLATE GDT 12/13/11 60157757 The stratification lines represent the approximate boundary lines between soil types: in situ, the transition may be gradual. BORING STARTED 10/3/11 NORTHING AECOM OFFICE Denver 1389436 BORING COMPLETED 10/4/11 ENTERED BY SJH EASTING SHEET NO 3 2268299 RIG/FOREMAN SONIC C600/ APP'D BY EED AECOM JOB NO 60157757 WL 34.0' WD

CLIENT

LOG OF BORING NUMBER

NSR1

	Atlantic Richfield Company PROJECT NAME										-	
				ARCHITECT								
			Rico-Argentine Site - OU01	Drilling (	Comp	any:	Boa	rt Lor	ngyea	ar		
SITE LOCATION	N					-O-UI	NCONFI DNS/FT.	NED CO	MPRES:		RENGTH 5	
	T							-	-	-	1	
E	5	Š				PLAS LIMI			TER ENT %		UID IT %	
DEPTH(FT) ELEVATION(FT) PLE NO	PE A	DISTANCE RY	DESCRIPTION OF MATERIAL		Į≽		<		<b>)</b> – –		Δ	
DEPTH(FT) ELEVATION	<u>Г</u>	VERY I			JRY J	1	0 2	-	-	40 5	50	
SAMPL	SAMPLE TYPE	RECOVE	SURFACE ELEVATION +8,845 8 Feet		UNIT DRY WT	6		STANDA	RATION	BLOWS	(FT)	
4		0 12	FILL - Silty GRAVEL (GM) - extremely de	nse - moist -	2 -	1	0 :	20 3	30 4	10 5	0	
	PA		grayish - angular - reworked laydown yard mine waste rock	I gravel and								
5.0												
	20	П										×
2 8	SS	Ш									. *	
			Boulders							1		
F	PA	1	8.0 Clayey SILT with trace coarse sand size r	ock fragments					-			
			(ML) - moist - brown					2				
10.0			10.0 Silty CLAY with trace pebble Gravel (CL)	- maist - hraum		5	- 2 '					
3 8	ss		///11.0			5.0		•				
	-	+	11.5 Poorly sorted fine to medium SAND (SP) Silty SAND with trace pebble Gravel (SM)	- moist			-					
		3	Silty CLAY (CL) - moist - brown				-	-				
F	PA	1	14.0		. 1				,	-		
15.0		. 8	Silty GRAVEL (GM) - angular to subround to 7" - very dense to extremely dense - dr	led cobbles up	4	1					> ~	
- 3.00	ss		>50 blows 6-12" at 15.5'	y gray-brown							1	
4 3	٥٥	H	200 blows 0-12 at 19.9									1
			<b>2</b>									1
F	PA		7.7								1	
		1									1	
20.0			>50 blows 0-6" at 20 0'								350/6"	
5 5	ss		Increasing silt - wet at 21.0'							1	8	
	+		moreasing sit - wet at 21.0									
			(A)									
F	PA	8	XX									
25.0			Increasing clay - wet									
	ss		25.5 No SPT at 25.0' - boulders/cobbles	THE OTH COLAR	-		_					
	50	낻	Well sorted GRAVEL, up to 2" diameter, v red-brown	viin Siit (GW) -								P
F	PA		Clayey GRAVEL (GC) - cobbles increase	to 5-6"	1	-						1
			diameter - wet - rèd-brown Clay at 29.0-30 0'									
30.0		J.	2X230.0		-							
			contin	nued								

					LIENT <b>Atlar</b>		Richfield Company	LOG OF BOR			14.5	SR2			
AE		W	1	P	ROJE	CT N	AME	ARCHITECT-I							
				F	Rico.	-Arg	gentine Site - OU01	Drilling C	omp	any:	Boar	t Lor	gyea	r	
ITE LOC	CATI	NC								-O-10	NCONFII DNS/FT	NED CO		IVE STRI	
				1	-						-			1 3	
ON(FT)		ш	DISTANCE	1			DECODIDITION OF MATERIAL			PLA: LIMI		CONT		LIQU LIMI	T %
ELEVATION(FT)	SAMPLE NO.	SAMPLE TYPE	E DIST	/ERY			DESCRIPTION OF MATERIAL		UNIT DRY WT LBS /FT 3		0 2	-		0 50	_
	SAMP	SAMP	SAMPLE	RECOVERY	SLIRE	EACE	ELEVATION +8,845,8 Feet	(Continued)	JNIT G	0	3		ATION	BLOWS/(	(FT)
7			Ť	T	77.	1	*NOTE: Yellow stain zone near 30.0'. S					0 3	0 4	0 50	0
	7	SS		1		31.5 32.0	Clayey GRAVEL (GC), core intact with s gravel 1.5" minus - wet - gray	maller angular							
35.0		00	Т	T			Silty GRAVEL (GM), slight flow of fines dense - wet to saturated - gray	extremely			-				
	8	SS		1			36.0' - Color changes to red-brown								
40.0		PA					Increasing clay - cobbles up to 6" in diar red-brown 2" minus gravel - core intact	neter - angular -							
	9	ss			1.7	41_0		F. T (F. F							
		PA			0.0.0		Well sorted GRAVEL (GW), mostly subrup to 5" in diameter - wet - saturated - re								
45.0	10	SS		I	0 0		No SPT at 45.0' flowing gravels								
		PA			0.0		Most of core was water - gravel, cobbles diameter	s up to 4-5" in							
50.0					0.	50 0	No SPT - flowing sands into hole			100					
	11	SS				52.0	Poorly sorted SAND with trace pebble si wet - brown	ze Gravel (SP) -							
		PA			0 .0.		Well sorted GRAVEL, pebble size Grave coarse Sand size with depth (GW) - wet	el, increasing - brown							
55.0	12	ss	I	I		55.0	Poorly sorted SAND (SP), fine grained s saturated	and - wet				•			
		PA		-		58.5	Well sorted SAND, with trace pebble siz coarse Sand (SW) - wet								
0.0					1/2	60.0	Silty GRAVEL, with trace Clay near 60.0 to 2" in diameter (GM) - wet - brown	, subrounded up							
							con	tinued							

87 ⊗

AECOM ITE LOCATION	Atlantic Richfield Company PROJECT NAME Rico-Argentine Site - OU01	ARCHITECT-E	NGINE				
ITE LOCATION				EK			
ITE LOCATION	Rico-Argentine Sile - Utilit	Drilling Co			art Long	/ear	
TE EGGATION	Nico Aigentine one - Ooti	Dinning O	omp	O LINCOL	VEINED COMPI	RESSIVE ST	RENGTH
				TONS/	FT ² 3	4	5
ELEVATION(FT) SAMPLE NO SAMPLE TYPE	DESCRIPTION OF MATERIAL		F	PLASTIC LIMIT %	WATER CONTENT	% LIN	QUID MT %
ELEVATION PLE NO PLE TYPE PLE DISTAI			Α	10	20 30	40	50
ELEVATION SAMPLE NO SAMPLE DISTA	SURFACE ELEVATION +8,845 8 Feet	/O - 1' 1\	UNIT DRY WT	8	STANDARD PENETRAT		;/(FT)
0 0 0	Poorly sorted SAND (SP), fine grained Sand	(Continued)	2 2	10	20 30	40	50
13 SS	dense - wet - brown - saturated	, maanam			Ø •		
	Well sorted SAND with trace pebble size Gr	avel, fine to			+ +		
PA	deposits below 4" cobble  Silty GRAVEL (GM), pebble-cobble up to 4"	and					
65.0	65.0 brown						
14 SS	Poorly sorted SAND (SP), fine grained Sand						
PA	Silly GRAVEL, cobble up to 7" diameter (GN brown  67.5 Well graded SAND, fine to coarse grained S	l) - wet -					
15 SS	10001	and (SW) -					
	00069.5						
70.0 PA	Well graded GRAVEL (GW) - wet - red-brow	n					
	71.5 Color changes to gray-brown at 71.0' Poorly sorted SAND (SP), fine to medium gr	ade - very					
16 SS	dense - saturated - gray  Well graded SAND, trace pebble Gravel 2" r	ninus (SW) -			+	-	
	111111g upwards - Wet - Ted-brown						
75.0 PA	Silty GRAVEL (GM) - angular subrounded or minus with 2" gravel interbedded at 76.0' - w red-brown >60 blows 12-18" at 76.0'	obbles 4" et -					
17 SS	Poorly sorted SAND (SP) - fining upwards - dense - saturated - red-brown	extremely			•		
80.0	79.5 Fine to medium sand Well graded GRAVEL, mostly subrounded 3	" minus	-				1
PA PA	(GW) - wet - red-brown						48
18 SS	Poorly graded SAND (SP), medium to fine g 83.0 fining upwards - dense - saturated - red-brov	vn				0	1
	Well graded GRAVEL (GW), subrounded 2" extremely dense - wet - red-brown to gray	minus -					1
85.0 PA	6						,
	6						
19 SS	No recovery from 87.0-95.0' >50 blows 6-12" at 87.5'						
	6						
90.0	antique continue						e e e
	continue	u					
				M JOB NO.			

					LIENT		LOG OF BO	RING NU	IMBER	NSR2		1111
A	c	74	A		Atlantic Richfield C	ompany						
استدار	-	/17	1		ROJECT NAME	01104	ARCHITECT					
CITE I O	C A T.I	ONL	Ш		Rico-Argentine Site	- 0001	Drilling	Comp	any: B	DART LO	ongyea	IVE STRENG
SITE LO	CATI	ON							TONS	S/FT. ²	3	SIVE STRENG
									-		,	
(FT)			핑					1 1	PLASTI LIMIT 9		ATER ITENT %	LIQUID LIMIT %
(FT)	o.	Ĥ.	STA		DESC	CRIPTION OF MATER	IAL.	₽	×-		<b>•</b>	<del>_</del>
DEPTH(FT) ELEVATION(FT)	ž Щ	H.	피	ÆR				DRY \	10	20		0 50
	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE	RECOVERY	OUDEA OF ELEVATION	.0.045.0.5	(0 1: 1	UNIT DRY WT	⊗		TRATION	BLOWS/(FT)
	Ŋ	PA	(y)	22	SURFACE ELEVATION  Well graded (	RAVEL (GW), subrou	(Continued	) 55	10	20	30 4	0 50
					extremely der	nse - wet - red-brown to	o gray	1				
					0.34							
	20	ss		7	nau to clean	hole to 87.0' then drill v 0'.  Only 95.0-100.0' is						
			Ш		baller to Too.	o. Omy 00.0 100.0 13	native analotarbea.				4	
					0.1							
95.0			Ш		0							
			И		ò · · · ·					1		
		PA			á .							
			Ш		.0							
			Ш		o .							
			Ш		d · · · ·							
0.00			H	-	End of Boring			+		+	+	
					Backfilled with	bentonite chips (25 b	ags)					
			М		Boring logged Casing: 7.0"	l by: L. Beem I.D.						
					3							
- 11										- /		
			Ш									
										4		
									K II			
		/		М								
			١.						1 1			
												100
	The	stra	tific	ati	on lines represent the app	proximate boundary lin	es between soil types:	in situ	, the trans	ition may	be grad	dual.
ORTHING	3			_		BORING STARTED	AE	COM OF	FIOE	Denver		
STING		1389				BORING COMPLETED 10/3	EN EN	NTERED E		SHEET NO	) OF	4
L		2268				RIG/FOREMAN	AF	PP'D BY		AECOM JO	A OB NO	4
		21 5	-27	n'	WD	SONIC	C600/	FF	D		60157	757



**AECI** 

Site: RICO ST LUIS DRYING CEED@ineer: C. SANCHEZ

Sounding: CPT-NSR-02

Date: 11/1/2011 03:00



ELEVATION(FT)  SAMPLE NO	NO SAMPLETYPE SS SAMPLETYPE SS DA		PROJE Rico	TICL Richfield Company  CT NAME  -Argentine Site - OU01  DESCRIPTION OF MATERIAL  FACE ELEVATION +8,854 0 Feet  FILL - Silty GRAVEL (GM) - latite boulder angular - moist - brown (mine waste)  Some clay from 4.0-5.0' No SPT at 5.0' because of cobbles/boulder FILL - Clayey GRAVEL (GC) - extremely company to the state of the state	ock fragments	ompan	v: Boa	WATER CONTENT 9	ESSIVE STRENGTH  4 5  LIQUID
ELEVATION(FT)  SAMPLE NO  1  2  7  7  7  7  7  7  7  7  7  7  7  7	NO SAMPLETYPE SS SAMPLETYPE SS DA	DISTANCE	Rico	DESCRIPTION OF MATERIAL  FACE ELEVATION +8,854 0 Feet FILL - Silty GRAVEL (GM) - latite boulder angular - moist - brown (mine waste)  Some clay from 4.0-5.0' No SPT at 5.0' because of cobbles/boulde FILL - Clayey GRAVEL (GC) - extremely of the company of the co	ock fragments	-	PLASTIC LIMIT %  10	FINED COMPRET 2 3  WATER CONTENT 9  20 30  STANDARD PENETRATIO	### 5   LIQUID
ELEVATION(FT)  SAMPLE NO  7	SS SAMPLETYPE SS SAMPLETYPE	SAMPLE DISTANCE RECOVERY		DESCRIPTION OF MATERIAL  FACE ELEVATION +8,854.0 Feet  FILL - Silty GRAVEL (GM) - latite boulder angular - moist - brown (mine waste)  Some clay from 4.0-5.0' No SPT at 5.0' because of cobbles/boulde FILL - Clayey GRAVEL (GC) - extremely of the company of the c	ock fragments	-	PLASTIC LIMIT %  10	FINED COMPRET 2 3  WATER CONTENT 9  20 30  STANDARD PENETRATIO	### 5   LIQUID
5.0 2	SS PA SS	SAMPLE DISTANCE RECOVERY	SUR	FACE ELEVATION +8,854.0 Feet  FILL - Silty GRAVEL (GM) - latite boulder angular - moist - brown (mine waste)  Some clay from 4.0-5.0' No SPT at 5.0' because of cobbles/boulde  FILL - Clayey GRAVEL (GC) - extremely of	s	UNIT DRY WT LBS /FT ³	PLASTIC LIMIT % × - 10	WATER CONTENT S	** LIQUID LIMIT %
5.0 2	SS PA SS	SAMPLE DISTANCE	SUR	FACE ELEVATION +8,854.0 Feet  FILL - Silty GRAVEL (GM) - latite boulder angular - moist - brown (mine waste)  Some clay from 4.0-5.0' No SPT at 5.0' because of cobbles/boulde  FILL - Clayey GRAVEL (GC) - extremely of	s	UNIT DRY WT LBS /FT ³	LIMIT %	CONTENT 9	% LIMIT %
5.0 2	SS PA SS	SAMPLE DIST	SUR	FACE ELEVATION +8,854.0 Feet  FILL - Silty GRAVEL (GM) - latite boulder angular - moist - brown (mine waste)  Some clay from 4.0-5.0' No SPT at 5.0' because of cobbles/boulde  FILL - Clayey GRAVEL (GC) - extremely of	s	UNIT DRY WI	10	STANDARD PENETRATIO	40 50 DN BLOWS/(FT)
5.0 2	SS PA SS	SAMPLE	SUR	FILL - Silty GRAVEL (GM) - latite boulder angular - moist - brown (mine waste)  Some clay from 4.0-5.0' No SPT at 5.0' because of cobbles/boulde	s	UNIT DRY		PENETRATIO	
1 1 5.0 2	SS PA	MAS	SUR	FILL - Silty GRAVEL (GM) - latite boulder angular - moist - brown (mine waste)  Some clay from 4.0-5.0' No SPT at 5.0' because of cobbles/boulde	s	LINO			
5.0	SS PA		=	angular - moist - brown (mine waste)  Some clay from 4.0-5.0' No SPT at 5.0' because of cobbles/boulde FILL - Clayey GRAVEL (GC) - extremely of	s				
5.0	PA SS PA	Ш	=	Some clay from 4.0-5.0' No SPT at 5.0' because of cobbles/boulde					
5.0	SS PA	Ш	=	No SPT at 5.0' because of cobbles/boulde FILL - Clayey GRAVEL (GC) - extremely of					
	РА	Ш	-	FILL - Clayey GRAVEL (GC) - extremely of					
			XXXX	tan then brown with depth (mine waste)	1.458		•	*	
10.0									
-				Backfill demolition debris at 9 0'					
3	SS								>50/6
		1					•		
	РА			Sludge, black, wet, septic/wastewater odo Clayey gravel - wet - yellow staining	- metal debris				
15.0	5.0			Rock fragments up to cobble size at 14.0'					
	ss	Ш	***	No SPT - demolition debris					
	00	111		Clayey gravel with dolomite clasts cobble	size - pyrite or				
	PA			FILL - Sandy GRAVEL (GW) - moist - yello 19.0 (possible staining noted on cobbles from n 20.0 (water)	w and tan ine tunnel		4		
20.0	00	TH		FILL - Well sorted SAND (SP) with latite of	bbles - moist -				>50/6
5	SS	11		\reddish tan FILL - Clayey GRAVEL (GC), appears to b	e some				
25.0	PA	4	7	calcine tailings - zone of galena deposits - dense - very moist - red, yellow, brown (po noted on cobbles from mine tunnel water) Latite boulders up to 7" in diameter Wet at 24.0' above latite boulder Latite boulder	extremely				
6	ss			ALLUVIUM - Silty GRAVEL (GM) - well rou cobbles, latite and hermosa sandstone - u diameter - extremely dense - wet					₹50/6
	PA		1/3	>50 blows 0-6" at 26.0'					
30.0			0	30.0 Well graded GRAVEL (GW)					
	ss		1/1	31.0 Silty GRAVEL - wet - saturated - brown (0	iM)				
		4	1111	31.5 Well sorted SAND (SP), fine to medium gr	ained - wet -			•	
35.0	PA			Salt and pepper color Silty CLAY (CL) - moist - brown (in SS sho Silty GRAVEL (GM) - very dense to extren saturated - brown	e at 31.5') nely dense -				54 
			1-/-	contin	neq				1 1 8

CLIENT LOG OF BORING NUMBER NSR₃ **Atlantic Richfield Company** A=COM PROJECT NAME ARCHITECT-ENGINEER Rico-Argentine Site - OU01 **Drilling Company: Boart Longyear** O UNCONFINED COMPRESSIVE STRENGTH TONS/FT.² 1 2 3 4 5 SITE LOCATION WATER PLASTIC LIQUID SAMPLE DISTANCE **ELEVATION(FT** LIMIT % CONTENT % LIMIT % DEPTH(FT)  $\triangle$ **DESCRIPTION OF MATERIAL** UNIT DRY WT SAMPLE TYPE SAMPLE NO 10 30 40 50 20 STANDARD  $\otimes$ PENETRATION BLOWS/(FT) SURFACE ELEVATION +8,854.0 Feet (Continued) Silty GRAVEL (GM) - very dense to extremely dense -8 SS saturated - brown PΑ >50/6 40.0 9 SS Trace clay - cobbles 43.0-44.0' - Increasing clay content 45.0 PA Decreasing clay, mostly silt - flowing - 8.0" cobbles Increasing clay - wet to very moist, noticeably drier Small cobbles to pea gravel 51 50,0 Silty CLAY with fine to coarse Sand (CL) - moist 10 SS Poorly sorted SAND (SP) - fining upwards - wet (SP) Silty GRAVEL (GM) - SS cobbles to 6" diameter medium dense - wet - red - trace clay at 52.0', then PΑ grades to silt to 55.0' Dolomite and red hermosa - SS cobble to 6.0" diameter 8 55.0 11 SS Well graded GRAVEL to 3" diameter (GW) - coarse sand PA 60.0 End of Boring Hole sealed with bentonite (24 bags) Boring logged by: L. Beem Casing: 7.0" I.D. The stratification lines represent the approximate boundary lines between soil types: in situ, the transition may be gradual. NORTHING BORING STARTED AECOM OFFICE Denver 1389791 BORING COMPLETED 9/30/11 ENTERED BY SJH EASTING SHEET NO 2268136 APP'D BY WL RIG/FOREMAN AECOM JOB NO 24.0' WD SONIC C600/ 60157757

					LIENT	LOG OF BOF	RING NU	MBER	N	SR4				
AΞ		AC	A		Atlantic Richfield Company	ADOLUTEOT	ENOUG							
	-	711	7 11		ROJECT NAME	ARCHITECT-			Dac	mt I a	nauce	0.11		N
TE : 5	0				Rico-Argentine Site - OU01	Drilling (	omp	any:	ROS	INED CO	IIgye	ar SIVE STE	SENIGTU	
ITE LO	CAT	ION						-O-1	ONS/FT	2	3	A	5	
			1						-	-	-	-	ĭ	M
F.			Щ						STIC		TER		QUID	
ELEVATION(FT)			AN	RECOVERY	DESCRIPTION OF MATERIAL				IIT % — −		ΓΕΝΤ %		IIT % △	
ELEVATION	9	SAMPLE TYPE	ISIO	R	DESCRIPTION OF WATERIAL		UNIT DRY WT LBS /FT 3		10	20	30	40	50	
ELE, C	SAMPLE NO	P.E.	님	OVE			A F		-	STAND	ARD	-	-	
	SAM	SAM	SAM	REG	SURFACE ELEVATION +8,868 4 Feet		LBS		⊗ 10	PENET 20		BLOWS 40	/(FT) 50	
V			T	T	Silty GRAVEL (GM) with trace Clay and a	ngular to		7		T		Ī		
	1	SS			subrounded cobbles 7" minus - medium o	ense - moist -								8
			+	1	tan and gray - possible landslide debris									
	-													
	1	PA			38									
5.0	-		1	-	£131				15					
	2	ss			RIG				<b>1</b> 5					
	-	-	1	H						1				
					5195						1			
-		PA			S Pi							1		Y
	1	1. ()			9.0 DOLOMITE boulder from 7.0-10.0'		-							
0.0					9.5 POSSIBLE LANDSLIDE DEBRIS - Claye with trace pebble Gravel - moist - light bro	SILT (ML)	1			1	-		1	
	_	1	T	T	POSSIBLE LANDSLIDE DEBRIS - Claye	GRAVEL								
	3	SS			(GC) - angular and subrounded cobbles	" minus -								
			Г		extremely dense - moist - tan									
		PA		1 8	14.0									
					POSSIBLE LANDSLIDE DEBRIS - Silty (	GRAVEL (GM)								
5.0	-		1	T	with cobble, subrounded and angular rock very dense to extremely dense (loose bel	fragments -								
	4	ss			moist - dark brown	UVV 20.U ) -								(
	-		1	1	DOLOMITE boulder with Pyrite vein									
				1	(%)									
		PA		1	22									
					6/3									
0.0			1		(%)			1						
	5	ss	1		<i>(2)</i>									<b></b>
	1	33		H	7.7								2	-
		111		13	Numerous boulders							,	-	
		L.			1./2	ont ookblee ee l					. 3	-		
		PA			Changes in matrix color because of differ boulders	ent copples and				0	-			
)E ()				1.5	7.7					-				
25.0	1		T	T	E/3			6	- 1					
	6	SS		1	7.26.5			8						
			+	×	POSSIBLE LANDSLIDE DEBRIS - Silty (	LAY (CL) with		1						
					pebble size subrounded Gravel - wet			-1						
		PA		13	POSSIBLE BOTTOM OF LANDSLIDE DI	BRIS - Silty		1						
	1	Ì			GRAVEL (GM) with trace Clay at 28.0' the	en changing to		1.						
30.0	1				201 On Wet - Contact Will OL below at ap									
					conti	nued								
								( )						
								1						
			A											
The stra	tificati	on lin	es re	epre	sent the approximate boundary lines between soil types: in situ, the tra	nsition may be gradual	AEC	ОМ ЈОВ	NO <b>60157</b>	757	SHEET N	10 1	OF 4	

				CLIENT		LOG OF BOR	RING NU	JMBER	NS	R4		
<b>A</b> ==		14			Richfield Company							
*****	~C	JIY		PROJECT		ARCHITECT-			D	41		
ITE LOC	~ A T !	ON	Ш	Rico-A	rgentine Site - OU01	Drilling C	omp	any:	ROOL	T Long	year RESSIVE	STRENGTH
112 600	JA II	OIN						TO	ONS/FT 2	3	4	5
			П						-			-
(FT)			NCE	1117					STIC IT %	WATER CONTEN		LIQUID LIMIT %
DEPTH(FT) ELEVATION(FT)	0	YPE	SAMPLE DISTANCE	_	DESCRIPTION OF MATERIAL		¥		<b>←</b> − −			<u>~</u>
EPTF	SAMPLE NO	SAMPLE TYPE	SAMPLE DIS	× ×			UNIT DRY WT	1	0 20	-	40	50
	AMP	AMP	AMP	SUBEAC	CE ELEVATION +8,868 4 Feet	(Continued)	INIT I	(8	3 1	STANDARD PENETRAT	ION BLOV	NS/(FT)
	(I)			SORIAC	degrees -	(Continued)			0 20	0 30	40	50
	7	SS PA			ALLUVIUM - Silty CLAY (CL) trace coan angular pebble Gravel - core in tact - verbrown-red - massive  Angular to subangular rock fragments - l	ry moist -		w⊗ ,				
35.0		_			>50 for 0-6" at 35.0'						1	>50/6"
	8	ss		36.	0							60,0
		PA			Silty GRAVEL (GM) with trace Clay - and diameter, drilled through boulders - wet	gular cobbles 6" - red-brown						
40.0			+	40.	and the same of th							5.50/0
	9	SS	ļ		Clayey GRAVEL (GC) with boulders and fragments up to 3" diameter - extremely brown-red	d angular dense - wet -						>50/6"
45.0		PA		\$0\$°,43.	Silty GRAVEL (GM), with trace Clay - fir rounded river cobbles - 4.5" minus - very extremely dense - wet - red-brown Yellow precipitate zone from 43.0-44.0' -	y dense to						
	10	SS										8
50.0		PA										1
30.0	11	ss			>50 blows 6-12" at 50.5'							
		D.		53.	Poorly sorted sand sized pebble subrout - red-brown (SP)	nded gravel - wet						
55.0		PA		7/	Silty GRAVEL (GM) with trace Clay, trace minus - extremely dense - wet - red-brow	ce cobbles 4" wn						1
	12	ss		56.								\$50/6"
		PA		58.	Well sorted GRAVEL (GW) with trace Si subrounded cobbles - wet - red-brown - producing zone Clayey GRAVEL (GC) with some Silt - 4	groundwater -5" minus					7	1
60.0					subround cobbles - dense - very moist - noticeably drier to 60.0'	- red-brown - 					_ 40	
			1.1		con	tinued			17.77		1.	

			_	CLIENT	LOG OF BOR	ING NON	IDEK	NSR4				
		14		Atlantic Richfield Company								
A=COM			1	PROJECT NAME		ECT-ENGINEER						
				Rico-Argentine Site - OU01	Drilling C	illing Company: Boart Longyear  UNCONFINED COMPRESSIVE STRENGT						
E LO	CATI	ON	- 4				-O-UNCO TONS	NFINED COM /FT 2				
	-	-				1	1	2 3	4	5		
F			띩	77			PLASTIC			UID		
ELEVATION(FT)		ш	SAMPLE DISTANCE	DESCRIPTION OF MATERIA	ı	_	LIMIT %	CONTE	NT % LIM	IT % △		
VATI	8	SAMPLE TYPE	LE DIS		<b>.</b> L	× × ×	10	20 30	40 5	50		
믭	SAMPLE NO	IPLE	밆			UNIT DRY 1		STANDAR				
	SAN	SAN	SAMPI	SURFACE ELEVATION +8,868 4 Feet	(Continued)	LBS	10	PENETRA 20 30	ATION BLOWS/	(FT) 50		
	13	SS	П	60.5 Silty GRAVEL (GM) with trace Clay, fi	na to coarce Sand				9			
	10	00		pebble Gravel, rounded cobbles - extr	emely dense - wet				Y X			
5.0		PA		Changed sample interval to 62.0' and keep casing at TD of hole	then every 5.0' to				1			
				(A)		1 1				>50/6		
	14	ss		Cobble in shoe								
			Ш	69.0						1		
0.0				Clayey GRAVEL (GC) - subrounded of						1		
U.U		РА		- very moist - increasingly wet with de	μιι							
				71.5								
				Well graded GRAVEL (GW) with trace	Clay - pebble							
	15	SS		gravel, 3" minus - extremely dense - v	vet							
			Ц	74.0						1		
				Well sorted SAND (SW) with trace sm	all pebble Gravel -							
5.0		РА		2°° 475.5								
		,		Silty GRAVEL (GM) with trace Clay - r 3" minus - very dense - wet - red-brow	more angular gravel			11 7 - 11				
		<u>.                                    </u>		V/	<b>(11</b>							
	16	ss		77.5 Well graded GRAVEL (GW), trace Sill	- silt increasing		-					
			Ц	with depth - wet - light gray	- Newstransing					- 3		
				79.5						1		
0.0				Silty GRAVEL (GM), trace Clay, angu cobbles 4" minus - very moist	lar to subangular					1		
				Thinds - very moist						1		
				22						1		
		PA		Hermosa boulder at 82.0' (2.0' thick)						1		
		^		(XX)						1		
				Increasing clay						1		
5.0				Most rock fragments are lower hermos	sa arkose and							
				dolomite						4		
				Angular cobbles and small boulders, h	nermosa arkose -					>50/6		
			1	increasing clay content - moist - light of	gray					3		
	17	SS		E/3/								
		D.	1	K/S								
0.0		PA		90.0								
				C	ontinued							
		-								4		
				esent the approximate boundary lines between soil types: in situ, the		AFCO	M JOB NO <b>601</b> 5	SHI	EET NO 3	OF.		

CLIENT LOG OF BORING NUMBER NSR4 **Atlantic Richfield Company** AECOM PROJECT NAME ARCHITECT-ENGINEER Rico-Argentine Site - OU01 **Drilling Company: Boart Longyear** O UNCONFINED COMPRESSIVE STRENGTH SITE LOCATION 5 PLASTIC WATER LIQUID ELEVATION(FT) SAMPLE DISTANCE LIMIT % CONTENT % LIMIT % DEPTH(FT)  $\times$  $\rightarrow$ UNIT DRY WT. SAMPLE TYPE DESCRIPTION OF MATERIAL SAMPLE NO 10 20 30 40 50 STANDARD  $\otimes$ PENETRATION BLOWS/(FT) SURFACE ELEVATION +8,868.4 Feet (Continued) DOLOMITE, fractured, Clay in fractures, light gray Light gray crystalline DOLOMITE Void 92.0-94.0' - drill stem dropped Fractured DOLOMITE and Clay (possible failure plane) 95.0 DOLOMITE heavily fractured with Clay infill - not re-cemented (possible landslide fracture plane) 100.0 100.0 DOLOMITE core fractured by sonic drill End of Boring Boring logged by: L. Beem Casing: 7.0" I.D. 60157757.GPJ FS DATATEMPLATE GDT 12/13/11 The stratification lines represent the approximate boundary lines between soil types: in situ, the transition may be gradual. BORING STARTED 9/27/11 NORTHING AECOM OFFICE Denver 1389778 BORING COMPLETED 9/28/11 ENTERED BY SJH EASTING SHEET NO 2268243 RIG/FOREMAN SONIC C600/ APP'D BY AECOM JOB NO. 60157757 WL 26.5' WD

Atlantic Richfield Company PROJECT NAME					LOG OF BOR	LOG OF BORING NUMBER PDF-1							
A=(	٠,	M		ROJECT NAME	ARCHITECT-	ARCHITECT-ENGINEER  Drilling Company: Boart Longyear  -O-UNCONFINED COMPRESSIVE STRENGTH TONS/FT 2 3 4 5							
				Rico-Argentine Site - OU01	Drilling (								
SITE LOC	ATIO	NC		•			-O-UNCON	FINED CO	OMPRESS	IVE STRENGTI			
	- 99	1	-				1	2	3 4	5			
F			円				PLASTIC		ATER	LIQUID			
DEPTH(FT) ELEVATION(FT)		س ا	TAN	DESCRIPTION OF MATERIA	AI	  -	LIMIT %		TENT % — — -	LIMIT % - — —∆			
DEPTH(FT ELEVATIO	2	₹.	DIS.	BESOM HON OF WINTERN	\ <u></u>	× ×	10	20	30 40	50			
	SAMPLE NO	SAMPLE TYPE	SAMPLE DISTANCE RECOVERY			UNIT DRY WT	0	STANE					
	SAN	SAN	SAN	SURFACE ELEVATION +8,831 6 Feet		LBS	⊗ _10	PENET 20	RATION 8	BLOWS/(FT) 50			
				PDF DIKE FILL - Silty Sandy GRAVE subrounded to rounded - medium den	L (GW) -								
		GB		o b	ise - moist				29				
	1	GB	T	50: 03.0  FILL - Calcines - Silty fine SAND (SM)	) sized out <10%	-	•		8				
		GB	4	silt - reddish purple (no munsell color)	- moist - medium			-					
5.0			1	dense to loose			ø ¹	3					
	2	GB	Ш				1						
		GB					8						
	3	GB		<b>***</b>									
10.0		GB					10						
	4	GB					P						
		GB	4				1 .11 Ø						
	5	GB	T				8						
40.0	_	GB	8				_/						
15.0		-	T	Becoming wet at 14.5'			⊗ 5						
	6	GB					1						
							Y	1					
		GB					1			/			
20.0	Щ						.7 &						
	7	GB					w .						
			4	22.5			100						
		GB		<ul> <li>ALLUVIUM - Silty Sandy Cobbly GRA</li> </ul>	VEL (GW) -		_	1					
		GB		approximately 5% cobbles to 4.5", 55' and 10% silt fines - predom, subround	% gravel, 30% sand				1				
25.0			П	gravel - bluish black 2 GLEY 2.5/5PB-	<ul> <li>black color does</li> </ul>				8				
	8	GB		not appear to be organic, rather appeared to calcines - dense - wet	ars to be chem				y I				
			1	25.0-30.5' - Core sample appears to c	contain calcines				1				
		GB		from above - using water to prevent he casing - sampling alluvial material only									
30.0									⊗34				
	9	GB		Becomes dark olive green 5Y 3/2									
		GB		32.0 Mix of units from 22.5-30.0' and 32.0'-									
				ALLUVIUM - Gravelly Silty SAND (SV rounded gravels - gravels up to 1.5" -	V) - subrounded to								
05.0		GB		7.5YR 5/8 - wet	on ong prown								
35.0		OB		35.0': Becomes dark yellowish brown	10YR 4/6								
			15	000									
				0 0 0				,	7				
		G.		6 % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
40.0		GB		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						200			
				C	ontinued								
- '													
	_	_					ом JOB NO. 60157						

			Atlantic Dishfield Company	LOG OF BOR	ING NU	MBER	PDF-1								
AEC	DA	1		Atlantic Richfield Company ROJECT NAME	ARCHITECT-	T-ENGINEER									
				Rico-Argentine Site - OU01		Company: Boart Longvear									
ITE LOCAT	ION		-				-O-UNCON TONS/F	FINED CO	MPRESSIV	E STRENC					
DEPTH(FT)  ELEVATION(FT)  SAMPLE NO	SAMPLE TYPE	SAMPLE DISTANCE	DISTANCE	DISTANCE	DISTANCE	DISTANCE	DISTANCE	/ERY	DESCRIPTION OF MATERIAL					TER ENT %	LIQUID LIMIT % — -\(\triangle \)
AMPL EL	AMPL	AMPL	RECOVERY	SURFACE ELEVATION +8,831.6 Feet	(Continued)	UNIT DRY V	8		RATION BL						
45.0 50.0	GB GB			ALLUVIUM - Gravelly Silty SAND (SW) - rounded gravels - gravels up to 1.5" - str. 7.5YR 5/8 - wet 40.0": Dark yellowish brown 10YR 4/6  Mostly fine sand, gravels reduce to <5%, 5% silt - yellowish red 5YR 4/6 (SP)  Grades to silty fine sand with approximat fines - reddish brown 2.5YR 4/8 (SP-SM)  Subangular to subrounded, medium and fines <5% (SP)  Transitions back to silty fine sand - approfines (SP-SM)	approximately ely 10% silt ) coarse sands -	ר	10	20 5	30 40	50					
55.0	GB			68.0 Fine Sandy CLAY (CL) - dark reddish gra	ıy 2.5YR 4/1 -										
70.0	July			moderately plastic - moist											
75.0	GB			Transitions to Sitty fine SAND (SP) - wear - approximately <5% fines  Transitions to reddish brown 2.5YR 4/3	к rea 2.5ҮК 4/2										
0.08				<u> </u>											
				cont	nued										
The stratificat	cation lines represent the approximate boundary lines between soil types: in situ,				nsition may be gradual	AECO	OM JOB NO	I s	HEET NO	2 OF					

		1	Atlantic Richfield Company				OG OF BORING NUMBER PDF-1							
4=C	PROJECT NAME													
			I	Rico-Argentine Site -	OU01	Drilling	Co	mpa	any: Boa	art Lo	ngye	ar		
TE LOCAT	ION								-O UNCON TONS/F	FINED C	OMPRES 3	SIVE STREET		
ELEVATION(FT) PLE NO		NCE							PLASTIC LIMIT %	V	ATER	LIQUI LIMIT		
ATIO	YPE	STA		DESCR	RIPTION OF MATERIAL		ķ	3	×-		30	40 50		
ELEVAT SAMPLE NO	SAMPLE TYPE	SAMPLE DISTANCE	OVER				200	LBS /FT 3	10	20 STAN	-	40 50		
SAM	SAM	SAM	REC	SURFACE ELEVATION +8	3,831.6 Feet	(Continue	(d)	LBS	⊗ 10			BLOWS/(F 40 50		
5.0	GB			Transitions to S - approximately	ilty fine SAND (SP) - wei <5% fines	ak red 2.5YR 4/2								
	GB			92.0										
				Silty fine SAND	(SM) - predom. approxir it 93.0' and 99.0' of 25%	nately 15% silt								
5.0	GB			reddish gray 2.8 4/3	5ÝR 4/1 - generally reddi	sh brown 2.5YR								
0.00	+	H		100.0 End of Boring			+	4		-	+			
				Boring logged b Casing: 5.5" l.[	pentonite (19 bags) by: A. Jewell ). ble - frozen pump									
The	e stra	tific	ati	on lines represent the appro	oximate boundary lines b	etween soil type	s: in	situ,	the transition	on may	y be gra	idual.		
RTHING	138	847	9		BORING STARTED 10/6/11		AECON	/ OFF	ICE De	nver				
STING	226				BORING COMPLETED 10/6/11		ENTER	ED B	Y SI	HEET NO	3	F 3		
					RIG/FOREMAN		APP'D BY AECOM			ECOM JO	OM JOB NO			
	14.5	W	ע		MINI-SONIC C	100/		EE			60157	151		

				С	LIENT	LOG OF	BORI	NG NU	MBER	P	DF-2			
A ==		14	4		Atlantic Richfield Company									
A.	C	JIV	1		ROJECT NAME	ARCHITE					-41-			
ITE LO	CATI	ON	-	ŀ	Rico-Argentine Site - OU01	Drillin	ig C	omp		NCONE	INED C	ngye	ar SSIVE S	TRENGTH
IIE LO	CATI	OIN							T	ONS/F1	2	3	4	5
				1						-	-1	-	-	*
(FT)			SAMPLE DISTANCE						LIM	STIC	CON	ATER TENT %	L	IQUID IMIT %
ELEVATION(FT)	0	YPE	ISTA	$_{\scriptscriptstyle{>}}$	DESCRIPTION OF MATERIAL			M		×		<b>•</b>		<b>-</b> △
ELEVATION	LE N	LE T	LE D	VER				DRY FT 3		10	20 STANI	30	40	50
7	SAMPLE NO	SAMPLE TYPE	SAME	RECOVERY	SURFACE ELEVATION +8,838 9 Feet			UNIT DRY WT. LBS /FT ³		⊗ 10 _		RATION 30	BLOW 40	/S/(FT)
7	-	, v	0,	8	FILL - Wasterock/colluvium intermixed						T	1	1	
		GB			COLLUVIUM FRACTION - Clayey Gra (SP-SM) - gravels to 2.0" or larger - su	velly SAND bangular -	1			-			1	
				-	reddish purple (no munsell)		_/			¹² ⊗				
	1	GB			medium dense to very dense - slightly	d - black - moist to moist				1				
5.0		GB			Alternating colors from black to reddish	purple - color			1				1	
	2	GB	T		Granges do not appear to be in dealing	acimed layers					7			
	-	00		-	Becoming coarse grained at 6.5!									
	3	ST												
	"								[					
0.0	4	GB	П						8			4		
		-	Щ	-					1			•		
		GB		1					1			1		
	_			-	43				8 8			1		
	5	GB												
5.0		GB										1		
	6	ST	Ш											1
			1	▼										)
		GB	П		Becoming wet at 18.0'									
20.0										ø ¹³				6
	7	GB			Becoming slightly coarser grained					, ,				
			1											
		GB	П						1					
		GB							/					1
25.0			-	4					⊗ 3					
	8	GB	Ш									١.		
			1		27.0 ALLUVIUM OR CALCINE/ALLUVIUM I	All Silly Sand		-		1	-			-
		GB			Cobbly GRAVEL (GW-GM) - approxim	ately 50% grave	el le				1			
		OB	П		35 % sand and 15% silt fines - cobbles subrounded to subangular - reddish pu	to 3.0" or larger	r-				- 3	1		
0.0	-			-(	calcines to approx. 28.0' - dense - become	ming alluvium a	at					\⊗	36	
1.5	9	GB			approx. 28.0 ⁱ very dark gray - wet									
1.0				1	End of Boring									
			Н		Backfilled with bentonite (13 bags) Boring logged by: A. Jewell									10.0
					Casing: 5.5" I.D.									
												-	4	
	The	stra	tific	atio	on lines represent the approximate boundary lines	between soil typ	es: i	n situ	the tr	ansitio	n may	be gra	adual.	
RTHING	3	1388	696	3	BORING STARTED 10/10/1	1	AEC	OM OF	FICE	De	nver			
STING		2267			BORING COMPLETED 10/10/1	1	ENT	ERED E	Y <b>H</b>	SH	IEET NO	1	)F	
					RIG/FOREMAN		APP'	D BY		AE	сом јо	B NO		
		18.0	WI	)	MINI-SONIC C100/	J. Cerventes	1	EE	D			60157	7757	

				1	LIENT <b>Atla</b> n		Richfield Company	LOG OF BOI	NING NU	INBER	Р	DF-3			
A		<b>DN</b>	1		ROJE			ARCHITECT	-ENGINI	EER					
				1	Rico-	-Arg	gentine Site - OU01	Drilling	Comp	any:	Boa	rt Lo	ngye	ar	
SITE LO	CAT	ION								-0-1	ONS/F	T 2	MPRES	SIVE ST	REN 5
			П								ASTIC	1	1	7	JUID
DEFINITION(FT)			SAMPLE DISTANCE	П			DECODIDION OF MATERIA			LIN	MT % X- —		ATER TENT %	LIM	JOIL IIT 9 -∆
ELEVATION	N O N	TYP	DIST	ΉΥ			DESCRIPTION OF MATERIA	L	™ Y		10	20	30		50
	SAMPLE NO.	SAMPLE TYPE	MPLE	RECOVERY					UNIT DRY WI		8	STANE		BLOWS	/(FT
	S	Ś	S	2	SURF	ACE	ELEVATION +8,830.8 Feet PDF EMBANKMENT FILL - Silty Sand	v GRAVEL (GW) -	5 5		10	20			50
		GB					approximately 50% gravel, 40% sand subrounded to subangular - some sca moderate plasticity	and 5-10% silt -						44	
	1	GB			<b>***</b>	3.5							~ 3	100	
	-	GB	-	-	$\bowtie$		FILL - Cobbly Sandy Clayey GRAVEL debris - approximately 40% sand, 40% fines - cobbles to 4.0" - dark reddish b	(GC) - man made gravel and 20%			,				
5.0	-		T				fines - cobbles to 4.0" - dark reddish b loose	rown 5YR 3/3 -		8					
	2	GB	Ц		***		Clumps with up to 40% clay at 6.0-6.5			1					
		GB				7.5	Becomes mixed with calcines at 7.0'			1					
							FILL - CALCINES - fine sand and silt sapproximately 10% fines - reddish pur								
10.0	3	ST					color) - very loose 8.0-8.5' - Wet saturated layer - up to 3								
10.0			+				plasticity General increase in silt content similar								
	4	GB					10-12.5'	to 0.0-0.5 at							
		GB	1							1					
	5	GB					No representative core sample due to	hole cave		8					
		GB	+	V						12					
15.0										⊗ ⊗					
	6	GB													
							Attendated aballantities are seen	hit rook at 04.01							
		GB					Attempted shelby tube - no recovery -	nit rock at 24.0'							
20.0															
40.0			T				Attempted shelby tube - no recovery -	moving to SPT at							
	7	ST					25.0' Core bag ripped - no recovery from 20	0.0-22.5'							
			1			23.0								Ж	1
		GB			井	20.0	ALLUVIUM - Organic Silty SAND (ML- plant fibers - some medium to coarse								T
25.0					詽		layers - organic smell - very loose to d			3 Ø					
N.M.	8	GB			#		No core recovery from 25.0-30.0'			×.					
	-		Ц		#				1		1				
					#						1	1			
		GB			#							1	1		
30.0			3.1		1								1	41	
2.0					44.6		cc	ontinued					1	<b>≫</b> –	
The strat	lificali	on line	S ro	DEC.	sent the	annro	ximate boundary lines between soil types: in situ, the	transition may be gradual	AEC	OM JOB	NO		SHEET N	0 .	OF
oua															

		<b>N</b> 4.			LIENT Atlantic Richfield Co	mpany	LOG OF	BORIN	IG NUI	MBER	PDF-3			
A	C	IN	7		ROJECT NAME Rico-Argentine Site -	01104	ARCHITE				ort Lo	navoa		
SITE LO	CATI	ON	-		Rico-Argentine Site -	0001	Drillin	ig Co	mpa	Iny: Bo	FINED CC	MPRESS	IVE STR	ENGTH
								-	-	1	2	3 4	5	
) N(FT)			NCE							PLASTIC LIMIT %	CON	TENT %	LIQ!	T %
DEPTH(FT) ELEVATION(FT)	9	SAMPLE TYPE	SAMPLE DISTANCE	RY	DESCF	RIPTION OF MATERIAL			UNIT DRY WT	<b>≻</b> − 10		● — — - 30 4	<u>-</u> ∠ D 50	
DEP ELE	SAMPLE NO	MPLE	MPLE	RECOVERY					S./FT	⊗	STAND	ARD RATION I	BI OWE	(ET)
$\times$	S, A	SA	SA	뀞	SURFACE ELEVATION +	3,830.8 Feet	(Continu	ued)	5 9	10		30 4	5 50	
31.5	9	GB	J		31.5 Possible silty sa 31.0' - inferred	andy cobbly gravel alluvium rock - no rock in tip	contact at	1						
					End of Boring Backfilled with I Boring logged t Casing: 5.5" I.I	pentonite (8 bags) by: A. Jewell D.								
	The	strat	tific	atio	on lines represent the appro	oximate boundary lines betv	veen soil typ	es: ir	n situ,	the transiti	on may	be grad	ual.	
IORTHIN	G	1388	_			BORING STARTED 10/10/11			M OFFI	05	nver			
EASTING	-	2268				BORING COMPLETED 10/10/11		ENTE	RED BY	S	HEET NO.	2 OF	2	
ML		14.0'				RIG/FOREMAN MINI-SONIC C100/D. C	erventes	APP'E		А	ECOM JOI			
								-						

_					LIENT <b>Atla</b> r		Richfield Com	ıpanv		LOG OF BOF	ang N	NMRFK	P1	3-10			
A	C	JΛ	1		ROJE			17		ARCHITECT-	ENGIN	EER					
							gentine Mine	Site		Anderso	n End	ginee	ring C	ompa	ny. Ir	ic.	
SITE LO	CATI	ON	7	1			9					10	UNCONFI	NED CON			ENGTH
Ric			nti	ne									TONS/FT.	2	3	4	5
DEPTH(FT) ELEVATION(FT)		H.	SAMPLE DISTANCE				DESCR	IPTION OF MA	ATERIAL		Ę	LI	ASTIC MIT % ———		TER ENT %	LIM	NUID IT %
DEPTH(FT) ELEVATION	SAMPLE NO.	SAMPLE TYPE	PLE DIS	RECOVERY							UNIT DRY WT.	-	10 2	STANDA	-	0 5	50
X	SAM	SAM	SAM	REC	SUR	FACE	ELEVATION +8	.808.7 Feet			TE N		⊗ 10 2	PENETF	NOITAS		(FT) 50
	-		Ë		8882	7	Class A 3" Fill c				1	1	T				
		RB				3.5											
			T	T		3.6	Orange-brown s	olids			102	(1)				•	
5.0	1	ST		1		5.0	Calcine Red bro	own				*				i	
5.0	1.	131			m		Change on shel	by tube estima	ited at 5'	e allura aver		11				1	
			4	-	111	6.0	5Y3/2 - very sof	m-conesive, no t - wet (ML)	on-plastic - dar	colive gray	-	11	-			+	
	2 ST Partly organic silt with very fine sand, non-plastic - 20% very fine rounded sar loose/very soft - wet (ML)  RB 10.0					e sand, non-co inded sand - ve	hesive, ery	76	*				•				
		RB										1/					1
10.0			L									1 20	3"				1
	3 3A	SS			TIT	10,5		n-plastic, non-c	black EV2 E/4	fine roots	1	182					•
	JA	00	1	1	111	1	and plant mater wet (OL)	iai iraginients -	DIAUK 312.3/1	- very soit -		1	1	-			
		RB			Ē		Partly organic sa coarse rounded 5Y2.5/1 - very lo	to subrounded cose - wet (ML)	d sand, 74% sil ) (LOI = 2.18%	t/clay - black )					` .	, ,	
_	-6	88		-	1-0	14.1		ial - black 5Y2.	.5/1 (OL)	line roots	1	+	-			_	
15.0		1000			10	14.1	Fine to coarse s	and with trace		ery dark	/						×
				Н	9	9	grayish brown - Boulder	wet (SP)								1	0
		RB			0		Dodicel									-	
					0	17.5									1		
		1		Н	S. C.		Poorly graded g	ravel with sand	d, little siilt - 45	% fine to				1			
20.0	6	ss					coarse subround coarse rounded clay with 3" sear reddish brown 5	to subrounded ms of gravel wi	d sand, 12% sil ith 10-12% fine	t/clay, trace s - dark			12				
	1			1	3711	21.5	Hard drilling gra	vel's and cobb	les Collansino	hole	+	4	1.				
						-	in a dimining gra	and copp	odinapan ig				11				
					0	1							11				
					1	1							11				
05.0					1	1							1				
25.0	-				10	1					1		111				
				. 3	()							X	11				
	-				0	4							1 1				
				- 6	N								1 1				
		RB			1	1						/	11:				
	-	8			)	1							1 1				
					CX	-							11				
30.0	-	-		-	20	4							+17				
									continue	d	*C	alibrate	d Penetr	ometer			
													1				
											-					-	- 0.0
	-	_	-								1	COM IO	NO	10	L LEET NO		OF
The st	ratifica	ation lir	nes i	epre	esent th	e appro	oximate boundary lines t	between soil types:	in situ, the transition	may be gradual.	I AC	JOINI JUI	NO. 602398	18   3	HEET NO	1	5

A =/		<b>\</b>	4	1		ntic Richfield Company	DRAFT		. 10 101
AE(		JĮĄ	Ĺ	1		CT NAME	ARCHITECT-E		
					Ricc	- Argentine Mine Site	Andersor	Engi	ineering Company, Inc.
Rico			nti	ne					TONS/FT. ² 1 2 3 4 5
ELEVATION(FT)	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE	RECOVERY		DESCRIPTION OF MATERIAL	-	UNIT DRY WT. LBS./FT.³	PLASTIC WATER LIQUIC LIMIT % CONTENT % LIMIT 9  10 20 30 40 50  STANDARD
ш	AMP	AMP	AMP	ECO	CHE	FACE ELEVATION +8,808.7 Feet	(Continued)	INIT BS./i	
1	S	()	S	1	John	Hard drilling gravel's and cobbles. Coll		177	10 20 30 40 50
							7.7		
35.0	7	SS	T	1	Î	Poorly graded fine to coarse sand, little gravel - 15% fine subrounded gravel, 7			<del>   2</del> 1 
			II.			rounded to subrounded sand, 12% silts yellowish brown 10YR3/4 - medium de	/clay - dark		
		RB							
40.0						40.0  Poorly graded sand - well rounded to s	ubrounded fine to		15
	8	ss		1		coarse sand, 8% subrounded fine to m fines with 3" seam of fine sand (SP) fr dark yellowish brown 10YR3/4 - mediu	nedium gravel, 4% om 40.2'-40.5' -		
		RB							
45.0	9	ss	IT	T		46.0		J	• \$
	_	00	Ц			46.1 Silty sand seam			11
		RB				Poorly graded sand - well rounded to s coarse sand, 8% subrounded fine to m fines - dark yellowish brown 10YR3/4 - (SP)	nedium gravel, 4%		
50.0	10	SS	T	Ι	П	Poorly graded fine to coarse sand with gravel, trace silt - fine to coarse well ro	fine to medium		• 49
						52.0 gravel, 7% fines - dark yellowish brown medium dense - wet (SP-SM)  Poorly graded fine to coarse sand with silt - well rounded to subrounded fine to 80% very fine to fine sand, 10% fine silt - well rounded to subrounded fine to 80% very fine to fine sand, 10% fine silt - well rounded to subrounded fine to 80% very fine to fine sand, 10% fine silt - well rounded to subrounded fine to 80% very fine to fine sand, 10% fine silt - well rounded to subrounded fine to 80% very fine to fine sand, 10% fine silt - well rounded to subrounded fine to medium gravely fine to medium gravely fine to medium gravely fines - dark yellowish brown medium dense - wet (SP-SM)	n subrounded n 10YR3/4 - fine gravel, trace o coarse sand,		
55.0		RB				and coarse to medium sand, 95 silt - d brown 10YR3/4 - medium dense - wet	lark yellowish		
60.0		-						*Cal	librated Penetrometer
						· · · = 01	ondina od	Jai	

A ==		NA.	4	1		ntic Richfield Company	DRA			
A	C	M	4			ECT NAME		TECT-EN		
				Ц	Ricc	o - Argentine Mine Site	And	erson	Engi	ineering Company, Inc.
TE LO			ati	ne						TONS/FT. ² 1 2 3 4 5
1110		90.								i i i i i i i i i i i i i i i i i i i
Ē			핑							PLASTIC WATER LIQUID LIMIT % CONTENT % LIMIT 9
NOL		뮖	STAN			DESCRIPTION OF MATER	IAL		Į,	×
ELEVATION(FT)	ENG	ĒŢ	EDIS	ÆRY					RY V	10 20 30 40 50
	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE	RECOVERY			/0		UNIT DRY WT. LBSJFT.³	STANDARD  STANDARD  PENETRATION BLOWS/(FT
	S	Ś	S	Z I	SUF	RFACE ELEVATION +8,808.7 Feet Poorly graded fine to coarse sand w		tinued)	2 11	10 200 30 40 50
	11	SS				silt - well rounded to subrounded fin 80% very fine to fine sand, 10% fine and coarse to medium sand, 95 silt brown 10YR3/4 - medium dense - w	e to coarse sand subrounded gra - dark vellowish			
55.0		RB				Easy drilling from 60'-70'				
70.0						70.0				1/2
10.0	12	ss	T	I	11	Silty fine sand- 83% well rounded fine dark reddish brown 5YR3/3 - medi	ne sand, 17% silt	/clay		8 0
75.0		RB								
80.0						80.0				1 1 47
	13	ss				Poorly graded very fine sand, trace reddish brown 5YR3/3 - dense - we	silt (5%) - dark t (SP)			
85.0										
	1	RB				11				
		,,,,						1		
90.0						90.0				
						- 1000-0	continued		* Cal	librated Penetrometer
	1									
Th4	.00	Man B		FORE	onant	the approximate boundary lines between soil types: in situ,	The Iransition may be a	raduat	AEC	COM JOB NO. SHEET NO. 0

				LIENT Atlantic Richfield Company	LOG OF BORI	NG NUM	IBER	P13-101		
AEC	)/	M		ROJECT NAME	ARCHITECT-E	NGINEE	R			
		- =		Rico - Argentine Mine Site	Anderson			Company	v Inc	
TE LOCATI	ON		1	ALCO - AI Gentine Mille Site	Allucisul	Ligi	UNCO	NFINED COMP		RENGTH
Rico-A		ent	ine				TONS/	FT. ² 2 3	4	5
ON(FT)			RECOVERY	DESCRIPTION OF MATERIAL		Ę	PLASTIC LIMIT %	WATE CONTEN	T % LIN	QUID MT %
ELEVATION SAMPLE NO.	SAMPLE TYPE	i u	ÆRY			UNIT DRY WT LBS./FT.³	10	20 30		50
A P	MPL	Q M	CO		10 11 10	NIT D	8	STANDARI PENETRAT	O FION BLOWS	/(FT)
\(\overline{\pi}\)	Ś	Ü.	2	SURFACE ELEVATION +8,808.7 Feet Poorly graded very fine sand with silt - well re	(Continued)	נכ	10	20 30	40	50
14	SS	S		fine sand, 10% silt - reddish brown 5YR4/3 - (SM)	dense - wet				45 ⊗	3
	+	۲	H	93.0 93.5 Possible gravel or coarse sand seam					1	-
00.0	RI	В		Silty fine sand - 80% well rounded fine sand, silt/clay - reddish brown 5YR4/3 - very dense	20% e - wet (SM)					
15 <b>05.0</b>	SS	S		103.0  Poorly graded very fine sand with silt - well r sand, 21% silt - reddish brown 5YR4/3 - wet	ounded (SM)			i		
R1 S16	so	N								
100 %	SC	141		109.5	uani fina					
	SC			Poorly graded sand with gravel - 80% fine to rounded sand, 5% coarse to medium rounde fine to coarse subrounded to subangular gra - reddish brown 5YR5/3 - wet (SP)	ed sand, 15%					
			1							
20.0				120.0						
_		T	T	···· continue	ed	* Cali	brated Per	netrometer		
The stratific	ation	lines	герг	esent the approximate boundary lines between soil types: in situ, the transitlo	n may be gradual.	AECO	M JOB NO. <b>602</b> 3	9818 SHE	ET NO.	OF 5

A		NA.		Atl	antic Richfield Company	DRAF		NUN ė	NBEK	P13-	101		
AE		JIY			JECT NAME	ARCHITE				C		l.o.o	
SITE LOC	ATIO	NI.		Ric	co - Argentine Mine Site	Ander	son E	±ngı	neering	VEINED	ompres	Inc.	STREN
Ricc			rtir	ne					TONS/F	T. ²	3	4	5
DEPTH(FT) ELEVATION(FT)			SAMPLE DISTANCE						PLASTIC LIMIT %	C	WATER ONTENT %	6	LIQUIE
DEPTH(FT) ELEVATION	ģ	SAMPLE TYPE	DIST	≿	DESCRIPTION OF MATERIA	AL.		UNIT DRY WT. LBS./FT.3	10	20	30	40	50
DEP1	SAMPLE NO.	LE.	밀	IS RECOVERY				LBS./FT. ³			NDARD	-	
X	SAM	SAM	SAM	E SL	JRFACE ELEVATION +8,808.7 Feet	(Continu	ued)	LBS	⊗ 10	PEN 20	NETRATION 30	N BLC 40	WS/(FT 50
	R3	SON		000000	Well graded gravel with silt and sand brown - wet (GM)	- dark reddish							
	18	SS	4	-00									
125.0	10		+	-01									
		RB		50	126.0								
				× 1	126.5 Gravel's Weathered Rock		-					-	
	19	ws		×××××××××××××××××××××××××××××××××××××××	× ×								
				×	128.6								
	20	ws			Altered sandstone, Hermosa formatic greenish gray - medium to fine grains	on - quartz grains - ed - massive	-						
130,0	21	ws	П		bedding - hard	indoorro							
	22	ws	Ш										
	23	ws											
	20	****	+	-									
	24	WS											
135.0	25	ws											
	26	ws											
	27	ws	П										
	28	ws	H		137.3' to 138 feet fractured zone								
	29	ws			10.10 10 100 100 1100 100								
	30	ws	H	-									
140.0	_			-									
	-	WS	1	-									
	32	WS	1	-	141.8' to 142 feet fractured zone 50%	6 fluid loss lost 10	00						
143.0		RB		_	143.0 gallons drilling fluid drilling to 143' End of boring at 143.0'. Boring advan			+~ .	ibrated Pen	- hc	2425		
					Roller Bit and Sonic Drilling methods borehole tremi grouted with neat cemgallons). High solids bentonite grout in overburden section of borehole. Note: 26' to 143' WS = rotary wash cobtained.	. Bedrock section nent grout (30 was tremi into plac	of	Sal					
	The	stra	tific	ation	lines represent the approximate boundary line	s between soil typ	1			ion m	ay be gi	radua	1 -
NORTHING	;				BORING STARTED 10/6/	12	AECO	M OFF	ICE D	enver			
ASTING					BORING COMPLETED 10/12/	/12	ENTE	RED B	Y S	SHEET	NO. 5	OF	5
NL		10/1	<u></u>	7 21 2	RIG/FOREMAN AMS Compact Sonic		APP'D	BY	1	AECOM	JOB NO.	9818	

50/2" ⊗

			- 1	CLIENT		Richfield Company	LOG OF BO	ORING NUM	/IBER	P13-1	02 (M\	N)	
A=		M	1	PROJEC			ARCHITEC	T-ENGINE	-R			_	
						gentine Mine Site	Anders			Comi	nany. I	nc.	
ITE LOC	ATIC	DNI	_	IXICO	- \rac{1}{2}	gentine wille one	Allacis	on Engi	UNCO	NFINED (	COMPRES	SIVE STR	ENGTH
Rico			tine	9					TONS	FT. ²	3		5
		3									-	1	1-
Ē			اير						PLASTIC		NATER NTENT %		QUID IIT %
NO NO		ш	AM			DESCRIPTION OF MATERIAL		2	LIMIT %		- <b>-</b>		Δ
ATI (	Ö	7	S S			DESCRIPTION OF MATERIAL		\ <u>\</u>	10	20	30	40	50
ELEVATION(FT)	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE					UNIT DRY WT.		STAN	NDARD	-	4-
	SAM	SAM	SAM SEC.	SURF	FACE	ELEVATION +8,810,6 Feet		UNIT LBS.	⊗ 10	PENE 20	TRATION 30		(FT) 50
				8888		FILL: Sandy gravel, trace silt - 70% grave	I (well			Ť	T		
		HSA	ш	888		rounded to subrounded), 25% sand, 5% fi	nes						
		1134	Ш	***		-10YR4/4 - medium dense - moist (FILL:	5VV)						
		-	+	-888						<i>⊗</i> ²	.4		
	0	ss	Ш	8888									
			4	***	1					1			
5,0		HSA							1/2				
	1	ss	1	***				N					
		33		<b>***</b>					1				
		HSA			7.0	FILL: Silt and clay (settled pond solids,			West to a			-	-
			Ш			non-plastic) - 100% fines - 5YR4/4 - very	oose -		WOH/12"				
-	2	SS	1	***	9.0	moist to wet (FILL: ML)							
10.5		HSA				FILL: Calcines - 90% sand, 10% fines - re	ddish	14					/
10.0	-		1	<b>XXX</b>	1	purple - wet (FILL: SP-SM)		71				•	
			1									/	
_	3	ST	11	8888								1	
			Ш.	1888								1	
			111								,	/	
	4	ST	Ш					109					
15.0			Ш				- 9				-1		
10.0			th		15.5					1			52
	5	SS	11			Sandy gravel, trace silt - 70% gravel (sub to angular), 25% sand, 5% fines - 5YR3/2	ounded		1				/
			1	2	1	impacted by calcines) - very dense -wet (	SW)		1				1
-				.0	1				1.1				
		HSA			18.5				1			1	
						Sandy gravel with cobbles, trace silt - 70% (subrounded to angular), 25% sand, 5% f						,	
20.0				0		7.5YR3/2 - dense -wet (GW)			1			38	
	6	ss	Ш		1	NOTE: Root mass in cuttings @ 19.0' Cobbles encountered while drilling from 1	5 ft to 22		1			×	
			1		4	ft.	711 10 22			/	1		
					22.5					1			
		HSA				Poorly graded sand, some fine gravel, tra	ce silt -			1/	87		
		ISA	1			10% gravel (subrounded to angular), 85% fines - 7.5YR4/4 - medium dense- we	(SP)			1			
25.0										1			
40.0			11			NOTE: 3.5 ft heave into augers at 25'. SP values in sample S-7 are likely artificially	I-N		8 ¹	2			
	7	ss	11			values in sample o-7 are intery artificially	V 171		1				
			1						Ţ	1			
					28.0				- j	1			
		RB			20,0	Well graded sand, some gravel, trace silt	- 25%			1			
						gravel (subrounded to angular), 70% sand	, 5%						
30.0						fines - 5YR3/3 - medium dense - wet (SW	LLLE						
						conti	nued						
				1					1		1		

A = /		<b>5</b> 4.	4			ntic F	Richfield Company	DR	OF BORI <b>AFT</b>			3-102 (M	IW)
A=	CL	JIY	1	11.		CT NA			HITECT-E				Inc
SITE LOC	CATIO	ON	-	1	RICO	- AI	gentine Mine Site	And	ler SOI	Eligi	neering Co	ED COMPRE	SSIVE STRENGT
Ricc	o-Aı	gei	nti	ne							TONS/FT.2	3	4 5
T) ON(FT)		ш	ANCE				DESCRIPTION OF MATERIA	1			PLASTIC LIMIT % ———	WATER CONTENT 9	LIQUID 6 LIMIT %
DEPTH(FT) ELEVATION(FT)	SAMPLE NO.	SAMPLE TYPE	PLE DIST	RECOVERY			DESCRIPTION OF WATERIA	L		UNIT DRY WT. LBS,/FT.3	10 2	0 30 STANDARD	40 50
$\times$	SAM	SAM	SAM	REC	SUR	FACE	ELEVATION +8,810.6 Feet	(Coi	ntinued)	UNI	⊗ 102	PENETRATIO 0 30	N BLOWS/(FT) 40 50
	8	SS					Well graded sand, some gravel, trace gravel (subrounded to angular), 70% s fines - 5YR3/3 - medium dense - wet (	and, 5%			Ø •		
	9	ss	T	T		33.0	Well graded sand, some gravel, little s	III - 25%			914		1
		RB	1				gravel (subrounded to angular), 65% s fines - 5YR4/4 - medium dense - wet (	and, 5%			1		
35.0	10	ss		I	-:-1-[1	35.0	Well graded sand, some gravel, trace gravel (subrounded to angular), 70% s fines - 5YR3/3 - medium dense - wet (	and, 5%			•		
	11	RB SS	1	1		37.0	Well graded gravel and sand, trace sil gravel (subrounded to angular) 42% si fines -5YR4/4 - medium dense - wet (0	and, 8%			14		
40.0		RB	H	Ħ	. 4	39.5	Well graded sand, some silt, trace fine	259/			/ \		
40.0	12	ss		1			gravel (subrounded to angular), 67% s fines - 5YR4/4 - loose - wet (SW-SM)	and, 8%			₹ ,		
	13	RB SS		1		42.0	Well graded gravel, some sand, trace gravel (rounded to angular), 30% sand 5YR4/3 - medium dense - wet (GW)	silt - 65% I, 5% fines -			1/3		
45.0		RB		I	. A.	44.5	Poorly graded sand, trace gravel, trace gravel (well rounded to subangular), 9				11		
	14	SS	I	1		47.0	5% fines- 5YR4/3 - medium dense - w				<b>₹</b>		
	15	RB SS		Ι			Well graded gravel and fine to coarse silt - 65% gravel (rounded to subangul sand, 5% fines - 5YR4/4 - medium der	ar), 30%			1/4		
50.0		RB			0000	49.5	(GW-GM) Well graded sand with gravel - 30% gr	avel (well	- 111	-	1		
	16	ss				0	rounded to subangular), 65% sand, 5% 5YR4/4 - loose - wet (SW)	6 fines -			8		
		RB			D 0 0	53.0	Poorly graded sand, little silt, trace gragnavel (well rounded to subrounded), 8 10% fines - 5YR4/4 - medium dense -	35% sand,					
55,0	17	ss		1			(SP-SM)				•9	)	
		RB											
60.0					LLL	L-	, C	ontinued					

ATIC				KONE	CT NA	ME	ARCHITECT-I	NONE	ED	
				?ico		ME gentine Mine Site			ineering Company, Inc.	
-Ar	aer		1	-100	, ru (	goio minio Oito	7 3 3 3 5 6		○ UNCONFINED COMPRESSIVE STR	ENGTH
	3	tir	ne						TONS/FT. ² 2 3 4	5
	ш	SAMPLE DISTANCE				DESCRIPTION OF MATERIAL				QUID IIT %
ŏ.	F	DIST	.R			DESCRIPTION OF WATERIAL		\\ \\ \.	10 20 30 40	50
SAMPLE NO.	SAMPLE TYPE	MPLE	RECOVERY					UNIT DRY WT.	STANDARD  STANDARD  PENETRATION BLOWS	(FT)
SA	SA	SA	뿐	SUR	RFACE			5 9	10 20 20 40	50
18	SS		1			gravel (well rounded to subrounded), 8:	5% sand.			
	RB			Ш	63.5				1	
		N	1			Poorly graded sand, trace gravel, trace	silt - 10%			
-		Т	$\mathbf{T}$			fines - 5YR4/4 - medium dense - wet (S	SP)		11	
19	SS								₹ •	
								II.		
	RR								(A) [	
	IVD			11	69.0	Dearly graded cond little silt trace gra	vol. 59/	_		-
			_	11		gravel (rounded to subangular), 85% sa	and, 10%		118	
20	ss		Ц	П		fines - 5YR4/4 - medium dense - wet (	SP-SM)		1 9	
		Н	-							
					73.0				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	RB					sand, little fine gravel, trace silt - 95% s	sand, 5%			
						fines - 7.5YR4/4 - medium dense - we	t (SP)		1 12	
21	SS							1	⊗ ¹² •	
-		Ш							1 1	
			П					1		1
	RB									1
22	ss	T								1
		L			1			1		
	RB		И		1					
			Ш					1		
22	98	T								
		Ц					11		1	
									Y	
	RB									
			ķ							
		-7	H				ontinued			-
	18 19 20 21 22	18 SS RB 19 SS RB 20 SS RB 21 SS RB 22 SS RB 23 SS RB	18       SS                   RB                 19       SS                   20       SS                   RB                 21       SS                   RB                 22       SS                   RB                 23       SS                   RB                 23       SS                   RB	RB R	RB R	RB	Poorly graded sand, little silt, trace grayer (well rounded to subrounded), 8 10% fines - 5YR4/4 - medium dense - 10% fines - 7.5YR4/4 - medium dense - 10% fines -	Poorly graded sand, little silt, trace gravel - 5% gravel (well rounded to subrounded), 85% sand, 10% fines - 5YR4/4 - medium dense - wet (SP-SM)  RB  63.5  Poorly graded sand, trace gravel, trace silt - 10% gravel (rounded to subrounded), 85% sand, 5% fines - 5YR4/4 - medium dense - wet (SP)  RB  69.0  Poorly graded sand, little silt, trace gravel - 5% gravel (rounded to subangular), 85% sand, 10% fines - 5YR4/4 - medium dense - wet (SP-SM)  RB  Poorly graded sand, little silt, trace gravel - 5% gravel (rounded to subangular), 85% sand, 10% fines - 5YR4/4 - medium dense - wet (SP-SM)  73.0  Poorly graded predominantly medium to coarse sand, little fine gravel, trace silt - 95% sand, 5% fines - 7.5YR4/4 - medium dense - wet (SP)  RB  RB  23 SS  RB	Poorly graded sand, little silt, trace gravel - 5% gravel (well rounded to subrounded), 85% sand, 10% fines - 5YR4/4 - medium dense - wet (SP-SM)  RB  Poorly graded sand, trace gravel, trace silt - 10% gravel (rounded to subrounded), 85% sand, 5% fines - 5YR4/4 - medium dense - wet (SP)  RB  Poorly graded sand, little silt, trace gravel - 5% gravel (rounded to subrounded), 85% sand, 5% fines - 5YR4/4 - medium dense - wet (SP)  RB  Poorly graded sand, little silt, trace gravel - 5% gravel (rounded to subangular), 85% sand, 10% fines - 5YR4/4 - medium dense - wet (SP-SM)  73.0  Poorly graded predominantly medium to coarse sand, little fine gravel, trace silt - 95% sand, 5% fines - 7.5YR4/4 - medium dense - wet (SP)  RB  RB  RB  RB  RB  ARB  C2 SS  RB  RB  C3 SS  RB  C4 SS  RB  C5 SS  RB  C6 SS  RB  C6 SS  RB  RB  C6 SS  RB  RB  C7 SS  RB  RB  C8 SS  RB  RB  C9 SS  RB  RB  RB  C9 SS  RB  RB  RB  RB  RB  RB  RB  RB  RB	Poorly graded sand, little silt, trace gravel - 5% gravel (SP-SM)   Poorly graded sand, little silt, trace gravel, 5% sand, 5% sand, 10% fines - 5YR4/4 - medium dense - wet (SP)   Poorly graded sand, little silt, trace gravel, 10% fines - 5YR4/4 - medium dense - wet (SP)   Poorly graded sand, little silt, trace gravel - 5% gravel (rounded to subrounded), 85% sand, 5%

A=	cc	)A	A	1		ntic Richfield Con	npany	LOG OF DRAF	Т			13-102	2 ( <b>MW</b> )	
		//4		11.		ECT NAME	014	ARCHITI					man I	
					Ric	- Argentine Mine	Site	Ande	rson t	-ngi	neering C	ompa	iny, Inc	E STREN
RICC			nti	ne							TONS/FT	'2	3 4	5
DEPTH(FT) ELEVATION(FT)	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE	VERY		DESC	, RIPTION OF MATERIA	,L		UNII DRY WI.	PLASTIC LIMIT % ————————————————————————————————————	CONT	TER ENT %	LIQUIE LIMIT 9 - — —
	SAMP	SAMP	SAMP	RECOVERY	SL	RFACE ELEVATION +	8,810.6 Feet	(Contir	nued)	UNIT DRY	⊗ 10	PENETE		LOWS/(FT
	24	ss	I			sand, little fine	predominantly medium gravel, trace silt - 95% l/4 - medium dense - w	sand, 5%			10 	•		
95,0		RB				Silty fine sand, (rounded to sul	trace fine gravel - 5% g brounded), 75% sand, 2 dium dense - wet (SM)	20% fines -				1		
33.0	25	ss	I	1							10	1		
100.0		RB				100.0						/ `		
70010	26	ss				Poorly graded gravel (well rou 5% fines - 5YR	gravel with sand, trace unded to subangular), 3 R4/4 - dense - wet (SP) s noted at 100'.	silt - 60% 5% sand,			•			¥ ³
105.0		RB				gravel (well rou	and with silt, trace grave unded to angular), 85% - dense - wet (SW-SM)	sand, 10%					1	
	27	ss									•		<b>3</b> 4 ⊗	
110.0		RB				trace clayey fir angular), 75%	and with clay and grave nes - 15% gravel (subro sand, 10% fines - 2.5Y a - wet (SW-SC)	ounded to				,		
	28	SS		1					ľ					
115.0		RB										1 1	7	
	29	ss		1							1	· S		
		RB				119.0	No 7000 1000/ 2000	(a) then yelled			//	1		
120.0				-	C	Probable Rubtto_subangular)		continued				<u> </u>		
										l	DM JOB NO. 60239		SHEET NO	. OF

					_{LIENT} Atlantic Richfield	Company		G OF BOR	ING NUN	VREK	P13-10	2 (MV	V)	
A	CC	N		P	ROJECT NAME			RCHITECT-						
OITELO	OATIO	NA.1			Rico - Argentine	Mine Site	A	nderso	n Engi	neering	Comp	any, Ir	NC.	RENGTH
SITE LO	o-Ar		nti	ne						TONS/F	T. ²		4	5
I(FT)		- 1	SAMPLE DISTANCE							PLASTIC LIMIT %	CON	ATER TENT %		IQUID MIT %
DEPTH(FT) ELEVATION	ŏ.	TYPE	DIST	ΚΥ	D	DESCRIPTION OF MATERI	AL		Y W	10	20		40	50
DEP	SAMPLE NO.	SAMPLE TYPE	APLE	SOVE					UNIT DRY WT.		STANE		•	-
$\times$	SAN	SAN	SAN	REC	SURFACE ELEVATIO			Continued)	LB SI	⊗ 10	209	RATION 30	BLOWS 40	5/(FT) 50
	30	SS			Probable to subano	Rubble Zone - 100% grave gular)	I (subrounde	d						
125.0		С			Attempte Borehole	d to core. No recovery in ro abandoned. Artesian gain i ion tub while coring.	ck core. n							
127.0					127.0									
127.0					End of both HSA to 2 mud rotar barrel to Borings plaged by	oring @ 127.0'. Boring adva 5', boring advanced with roc ry to 122 ft. Boring advance 127.0'. Piezometer installed berformed by Cascade Drilli Anderson Engineering Co s not responsible for the so tions.	ck bit and ed with core I in borehole. ng and mpany, Inc.							
NORTHIN: EASTING	G	stra 1387 2268	785	5.45	54	BORING COMPLETED BORING COMPLETED 10/23	)/12	AE	in situ,	ICE De	ion may			
WL						RIG/FOREMAN		AP	P'D BY		ECOM JO	B NO.		
1	1	W.L.	(0)	v.5	' W.D.	CME-85/Roi	y Pilmore	- 2				602398	סוס	

A =		NA		1		ntic	Richfield Company	1	OG OF BO			P	13-10	3 (MW	/) 	
A=	L.C	JIY	1			ECT N			RCHITECT			ne C	om=-	my I		
TELOC	ATIC	211	_	1	RICC	) - A	rgentine Mine Site	/	Anderso	n Eng	Ineer	NCONFI	ompa	I <b>ny, In</b> MPRESSI	IC. IVE STRE	NGTH
Rico			ntir	ne							T	ONS/FT.	2	3 4	4 5	
DEPTH(FT) ELEVATION(FT)	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE	OVERY			DESCRIPTION OF MATERI	IAL		UNIT DRY WT. LBS./FT.³	LIM	STIC IT % <del>×-</del>	CONT	TER ENT % 0 — -	LIQI LIMI 	Т%
	SAME	SAME	SAME	RECO	SUF	RFAC	E ELEVATION +8,811.5 Feet			UNIT LBS/	9	⊗  0 :	PENETE	RATION E	BLOWS/( 0 5	FT)
		нw				8	FILL: Silty well graded gravel - pale to 10YR6/3 - medium dense - moist (FI	orown ILL: GM)				14				
	1	SS		I				,			A	× 14 ×				
5.0		RB				4.5 5.0	FILL: Possible pond sediments - bro	wn transitio	on .		1/12'					
	2	SS		_			to reddish brown (FILL) FILL: Calcine - dusty red 10Y3/3 - ve (FILL)									
	3	ST														
10.0	4	ST			**	3 10.0										
10.0		RB	T	T	**	8	Possible FILL: Well graded fine to co some fine to coarse sand, trace silt -	oarse grave	,							53 ⊗
	5	SS		1			10R3/3 - very dense - wet (Possible GW-GM)	FILL:				1				α,
	В	SS		1		13.6	Cobbles and boulders		- E		-	Ì				
15.0		00				00000										,
		RB			0.00	16.5	Well graded gravel, some sand, trac reddish brown fragments of sand-siz olive gray 5Y5/2 - medium dense - w	e sandston				1	22/	1		
20.0	7	ss		Ţ								*	23' 			
		RB			a	23.0							( 1			
25.0	8	SS	I	T		20.0	Well graded sand, some gravel, trac clay - dark brown 10YR3/3 - medium (SW-SM)	e silt, trace n dense - we	et				25 Ø			
-V.U		RB				26.0	Silty fine to coarse sand, little gravel	- dark	NA)	-		1	1			
				T			grayish brown 2.5Y4/2 - medium der	ise - wet (S	ivi)			12				
30.0	9	SS		-								1%				
30.0	7		1		4.4			continued								100
							proximate boundary lines between soll types: In situ, the			AF	сом јов	NO.		SHEET NO	1 0	OF 2

A		<b>1</b>		1		ntic Richfield Cor	npany	DRAFT	RING NUI	MBER P	13-103 (I	MW)	
A	C	JN	4			CT NAME  - Argentine Mine	Site	ARCHITECT		ineerina (	Company	, Inc.	
SITE LO			. 41			74 generio mine		7 11 140 101	J.I. <u>-</u> g	- UNCONF	INED COMPR	ESSIVE STRE	
Ric	o-A	rgei	nti	ne					-	1	2 3	4 5	5
DEPTH(FT) ELEVATION(FT)	М		ANCE							PLASTIC LIMIT %	CONTENT		
DEPTH(FT) ELEVATION	Ŏ.	SAMPLE TYPE	DIST	RECOVERY		DESCI	RIPTION OF MATERIAL		UNIT DRY WT. LBS./FT.3	10	20 30		90
	SAMPLE NO.	MPLE	MPLE	COVE					AT DE	8	STANDARD PENETRATI	ON BLOWS/(	FT)
	\S	rs RB	S	N.	SUR	FACE ELEVATION +	8,811.5 Feet	(Continue	d) 5 H	10	20 30	40 5	
			+	T		31.0 Well graded sa	ınd, some gravel, trace s	ilt, trace			×24		
	10	SS		1		clay - olive bro	wn 2.5Y4/4 - medium dei	nse - wet					
						Cobbles and b	oulders			1	11		
35.0		RB			8	35.0					Ē		
33.6						Well graded sa	ind and gravel, trace silt, .5Y4/4 - medium dense -	trace clay					
	11	SS	I	I		37.0 (SW-SM)				•	\$23		
		H	Ц	-		Silt inclusion (c 38.0 2.5YR4/4 - wet	coarse gravel size) - redd (ML)	ish brown			i i		
					X	38.8 Cobble					10		
40.0		RB		Ш		coarse gravel,t	fine to coarse sand, som race silt - dark yellowish	brown	1	1	1 1		
			L			10YR3/4 - med	lium dense - wet (SP-SN	)			124		
	12	ss		1							24 ⊗		
			H							1 11	13:1		
											1 1	1	
45.0		RB			Ш						1	-1	
					, dale	46.0	fine to coarse gravel and	fine to			26		
	13	ss		Ц	0	coarse sand, li	ttle silt - dark yellowish b	rown		1	\$26		
			ľ	1	90	J40 E	dium dense - wet (GM)			<i>       </i>	1		
	-	RB			1,0	Poorly graded	fine to coarse sand, som brown 10YR3/3 - mediu				1		
50.0		-	$\frac{1}{1}$	1		wet (SP-SM)	Diowii 1011to/0 modia	an dones			18		
51.5	14	SS		Ц		51.5					8		
			Ī			End of boring a 18.5'. Boring a	at 51.5 ft. HW casing inst dvanced to 50 feet with2	alled to 15/16"					
						roller bit. Borin	g advanced to 51.5 ft wit . Piezometer installed to	h split					
						opeon eample.	. r rozemeter metamoù te						
			L										
	The	gtra	lifi	Cat	ion lin	nes renresent the anni	roximate boundary lines l	netween soil types	s' in situ	the transition	on may be	gradual	
NORTHIN						оз горгозопістію аррі	BORING STARTED		ECOM OFF	-105	nver	J. 44441.	
EASTING		1387	785	6.4	35		10/1/12 BORING COMPLETED 10/13/12	- 1	NTERED B	Y SH	HEET NO.	OF _	
WL	_	2267	799	4.0	83		10/13/12 RIG/FOREMAN		AM APP'D BY	IH	2 ECOM JOB NO	2	
		W.L.	. @	7,8	3' 10-8	3-12	Modified Ditchwitch/					239818	

	-				LIENT Atlantic Richfield Company	LOG OF BOF		MBER SSR1
A=(		N			ROJECT NAME	ARCHITECT-	ENGINE	ER
				L	Rico-Argentine Site - OU01	Drilling (	Compa	any: Boart Longyear
TE LOC	ATI	NC				1		-O UNCONFINED COMPRESSIVE STRE TONS/FT 2 3 4 5
								TONS/FT 2 3 4 5
								PLASTIC WATER LIQU
ELEVATION(FT)			SAMPLE DISTANCE					LIMIT % CONTENT % LIMIT
E	0	YPE	ISTA	$\downarrow$	DESCRIPTION OF MATERIAL		W	X
ELEVATION	SAMPLE NO	SAMPLE TYPE		IR.				10 20 30 40 50
T III	MP	MPI	MPI	8			UNIT DRY	STANDARD  ⊗ PENETRATION BLOWS/(I
	Ś	Ś	Ś	2	SURFACE ELEVATION +8,863.5 Feet	T SEEFE	5 5	10 20 30 40 50
-	1	SS	Ш		Gravelly lean CLAY (CL) - angular grave medium dense - damp - brown (talus)	et, copples -		• ×A
			1	Ц	mediani dense damp brown (talas)			
-			П					
			П					
		PA	,	1	//A		11 9	
				1				
0,0	-		-	1	Siltier - dark brown			10
	2	SS		1	Siller - dark brown			
			1	4				•
				1				
		PA		1				
		ΓA						
2.0				-	Flat talus chips			, , , , , , , , , , , , , , , , , , ,
0.0				T	10.5 Cobbles - boulders			22
	3	SS		1	Clayey GRAVEL (GC) - angular gravel to	o cobbles -	i i	• 22
- 3			1	4	medium dense - damp - brown			X
				1	<b>8</b> %			à
		РА			989			ý.
		. , ,			14.0 Subrounded gravel to cobbles		1	V
5.0				И	Very Gravelly SILT with Sand (ML) - sub	rounded gravel,		, , , , , , , , , , , , , , , , , , ,
×1.V			T	T	2" minus - dense - damp - brown			\41
	4	SS	1	1	Gravelly CLAY with Sand (CL) - subang	ular gravel 3"	1	
			1		minus - damp - brown (CL)	and Statella		
				1				
		РА		1				. A
					Cobble/boulder			7
0.0					20.0 Yellow staining			/
	5	SS		1	Silty GRAVEL with Sand (GM) - subrour	ided gravel to		10
	5	JJ			cobble/boulder - medium dense - damp	- brown		
				1	ALLUVIUM - Gravelly lean CLAY with S.	and (CL) -		
					subrounded gravel to cobble - dense - d			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		PA		1		* ' - ' ' ' '		
					Yellow staining, black staining, angular of	gravel		1/2
5.0				7				
	6	SS		1				×44
			4	1				
				1	Fat clay, less yellow staining, no black s	taining, less		
		PA		1	gravel (CH)	-		
		17		1				
0.0				1	30.0			
0.0				T		tinued		
					Con			
1117								

TE LOCATION  SAMPLE NO  SAMPLE TYPE  A  SAMPLE	SAMPLE DISTANCE	PROJECT NAME Rico-Argentine		Drilling C		anv: Bo	NEINED CO	ngyea MPRESS	r Ive str	ENGTH	
2 SAMPLE NO SAMPLE TYPE	SAMPLE DISTANCE			Drilling C	omp	O UNCC	NEINED CO	ngyea MPRESS	IVE STR	ENGTH	
LEEVATION(FT)  SAMPLE NO SAMPLE TYPE	SAMPLE DISTANCE					TONS	/FT ²	INITRESS	IVE SIR	ENGIH	1
7 SS	111		DESCRIPTION OF MATER					0 4	5		
7 SS	111	į l	DESCRIPTION OF MATER	IAL	UNIT DRY WT LBS /FT 3	PLASTIC LIMIT % ————————————————————————————————————	CONT	TER ENT % — — — -	LIQI LIMI — — —2 0 5	T %	
7 88	111	SUBFACE ELEVA	ΓΙΟΝ +8,863.5 Feet	(Continued)	INIT D BS /F	8		RATION E		FT)	
			y CLAY with Sand (CL) - sub		27	10	20 3	0 4	0 5	0	
		minus around	wet - loose to dense - red-bi 30.0', plastic (talus)	rown - yellow staining			, p25				
15.0	U	Less p	astic with boulder			1/	-				
8 SS	s										
	-44	4///				1					
		Yellow	staining				1				
PA	A						\				
40.0		Boulde	r				\				
9 88	s							<b>⊗</b> 35	4		
	1	42.0						,			
		Clavey	GRAVEL with coarse Sand ( few 4" minus cobbles - wet -	GC) - subangular				1			
PA	A	43.5 staining	9		-	-	-			_	
45.0		subrou	TUM - Well graded GRAVEL nded gravel, 3" minus - grade	es less sand with	1		1				
10 SS	S	cobble	s - wet - red-brown aded SAND with Gravel (SW	) - subrounded			25				
	-	\///\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1" minus grades with cobbles - red-brown - upward fining se	s - wet - medium /		•		S			
PA	A	Gravel Gravel	y fat CLAY, few coarse Sand (CL) - subrounded gravel and wn - cobbles are (hermosa S	, some angular d cobbles - wet -					``	Α.	
50.0	+	50.0	GRAVEL with Sand (GC) - s	ubrounded, 4" minus						- 1	* 1
11 SS	s	gravel (talus)	with cobbles - extremely dens	se - wet - red-brown							1
PA	A	Well gravel, brown	aded GRAVEL with Sand (G) 2" minus grades to cobbles v	W) - subrounded with less sand - wet -							
55.0		More s More c									
12 88	s	log op Allin	IUM - Well graded SAND (SV red-brown	V) - extremely dense						-6	3.0
	14	58.5 Well gr	aded GRAVEL (GW) - angula	ar, 1" minus - wet -					/	/	
60.0		\red-bro	VVVII						1		
	T	red Elvin		continued							

				Atlantic Richfield Company	LOG OF BOR	ING NU	MBER ;	SSR1			
AEC	OA	A		ROJECT NAME	ARCHITECT-I	ENGINE	ER				
				Rico-Argentine Site - OU01	Drilling C			art I o	navos	ar	
NTE LOCAT	1011	_	J.	Rico-Argentine Site - Ooo i	Drilling C	Unipa	- UNCO	JEINED CO	MPRESS	AII SIVE STE	ZENGT
SITE LOCAT	ION						TONS	T. ²	3		5
T) ON(FT)	ш	TANCE		DESCRIPTION OF MATERIAL			PLASTIC LIMIT % —		TER TENT %	LIM	QUID IIT %
DEPTH(FT)  ELEVATION(FT)  SAMPLE NO	SAMPLE TYPE	SAMPLE DISTANCE	RECOVERY	BESOMI HON OF WATERWAY		UNIT DRY WT	10	20 STAND	+	40 5	50
SAM	SAM	SAM	REC	SURFACE ELEVATION +8,863.5 Feet	(Continued)	LBS UNI	⊗ 10		RATION 30		/(FT) 50
	PA		0.00000	Clayey GRAVEL with Sand (GC) - subrounde minus with cobbles - wet - red-brown With yellow staining	d gravel, 4"						>50
13	ss		Ι	Silty GRAVEL with Sand (GM) - subrounded gravel/cobbles - extremely dense - wet - red-l	orown		0			1	8
65.0	PA		ACC. 60000 CO.	Cobble/boulder in bit - recovered 1.0' below of 1.0' above from drill deck	obble and					1	
14	ss		Ι	Poorly graded SAND (SP), very fine to fine - or - red-brown	dense - wet				\$ [₹]	5	
70.0				Grades to medium sand 70.5 Grades to coarse sand					, '		
	PA		1	Well graded GRAVEL with Clay and Sand (G wet - red-brown - subrounded gravel 2" minus Poorly graded SAND (SP) - wet - red brown -	3			1			-
				fine 73.0' - Grades to medium sand 74.0 73.5' - Grades to coarse sand	very mile to						
<b>75.0</b> 15	ss			75.0 Well graded GRAVEL with Sand, coarse San (GW) - subangular to subrounded gravel, 2" r medium dense - wet - red-brown	ninus -		8	15			
	PA	T		Well graded SAND with Gravel, trace Silt (SV 77.0 subrounded gravel, 3" minus - wet - red-brown Very fine Silty SAND (SM) - wet - red-brown							
16	SS		1	Well graded SAND (SW) - grades fine to coal rounded gravel, 1"minus - wet - red-brown - s							
0.08	PA			80 0 Poorly graded coarse SAND (SP) - wet - red- Well graded Sandy GRAVEL, trace Silt (GW)							
				Well graded SAND, minimal fine Sand (SW) coarser with rounded gravel, 1" minus - wet -							Ī
17	SS		L	o o clean ତ୍ରୁଗଣ ବ୍ରୁଣ୍ଡ ଚ୍ଚୁମ							
85.0	PA			Color change in matrix to dark gray brown							
18	ss		I	Poorly graded SAND (SP) - grades fine to co. 88.0 red-brown							>5
90.0				Well graded GRAVEL with Sand (GW) - 2" m	inus gravel -						
VV.V.	1	Ť	9	continued							7

				0	LIENT		LOG OF BOR	ING NU	MBER S	SR1	
A -		34	4	1	Atlantic Richfield Compa	ny					
A=	C	JN	4	F	ROJECT NAME		ARCHITECT-	ENGINE	ER		
					Rico-Argentine Site - OU	)1	Drilling C	ompa	any: Boa	art Longy	ear
ITE LO	CATI	ON	Ī	1	· ·				-O-UNCON TONS/F	FINED COMPRE T ² 3	SSIVE STRENG
ELEVATION(FT)	SAMPLE NO	SAMPLE TYPE	SAMPLE DISTANCE	RECOVERY	DESCRIPTIO	ON OF MATERIAL		UNIT DRY WT LBS /FT 3	PLASTIC LIMIT % ————————————————————————————————————	WATER CONTENT 9	40 50
	SAN		SAN	REC	SURFACE ELEVATION +8,863.		(Continued)	LB SB	⊗ 10	PENETRATIO 20 30	N BLOWS/(FT) 40 50
	19	PA SS		Ī	Well graded SAND, rigrains - saturated - difference sand, red-brown Dark gray-brown with	ark gray-brown - saturated cobbles					
5.0			П		gravel-cobble - wet -	_ with Sand (GW) - s gray-brown	subrounded				
					95.5 Poorly graded SAND wet - gray-brown (SF	with Silt, very fine S	and (SP-SM) -				
					Poorly graded SAND	, fine Sand (SP) - we	et - gray-brown				
0.00					End of Boring. Boring logged by: S. Casing: 7.0" l.D.	Johnston					
ÓRTHING	G				on lines represent the approxima	IG STARTED		in situ,	IOF		radual
ASTING		1388	387	4		10/9/11			De	nver HEET NO	OF
L	_	2268	322	6		IG COMPLETED 10/10/11 DREMAN		TERED BY		4 ECOM JOB NO	4
•				-	I MON		1 /3/ 1		, I (1	004	7777

					LIENT Atlantic F	Richfield Company	LOG OF BOR	VIII O IVU	NIDEK	53	SR2			
		N	1		ROJECT NA		ARCHITECT-	ENGINE	ER					
						entine Site - OU01	Drilling (			Boar	t Lo	ngvea	r	
TE LOC	CATI	ON	ń	_				1	-C-U	NCONFI	NED CO	MPRESS	IVE STE	RENG
									T	ONS/FT.	2	MPRESS		5
(F)			핑							STIC		TER ENT %		UID IT %
ELEVATION(FT)	9	TYPE	DISTAN	۲		DESCRIPTION OF MATERIAL		×	)	$\leftarrow$ $ -$		BO 4		
ELE	SAMPLE NO	SAMPLE TYPE	SAMPLE DISTANCE	RECOVERY				UNIT DRY WT		-	STAND	-		
	Ś	Ś	/S	Y		ELEVATION +8,850.3 Feet Clayey SILT with angular Gravel (ML) - e	vtromoly dense	2 2				30 4		io '
	1	SS	Ш	Ш		- dry - brown (talus)	Atternery dense							
			Н	4					•	×				
		PA	П											
5.0														
	2	ss			6.0									>50 8
			Н	1		Lean CLAY with angular Gravel and cob (CL) - loose to dense - dry - brown	oles 5" minus		•	×			, '	
		PA		1								1		
		^		1							,			
0.0				1						16	1			
	3	SS								Ø ¹⁶				
			1	-					•	1				
		PA		1						,'				
		-		1					1					
5.0						Cobble/boulder			1					
	4	SS	Ш	18		Cobble/boulder			₫					
				1						•				
		PA		1						X				
		^		1							×			
0.0											X	34		
	5	SS										` 34 ⊗		
				1	23.0	SS cobble/boulder						1		
		PA		8	7///	POSSIBLE ALLUVIAL FAN DEPOSIT?	CLAY with						1	
5.0				1		Gravel (CL) - extremely dense - damp - I dark brown staining	ea-prown with						,	
J.U	6	SS	T	TE										\ Ø
	0	33	Ш	1										18
				1		12" boulder								-
		PA		1									-1	
0.0				1	30.0	Angular gravel/cobble 4" minus				- 4			1	
				T		cont	nued							
_									_					

			,		LIENT Atlantic Richfield Company	LOG OF BOR	1140 140	MBEK S	SR2		
A=		N	1		ROJECT NAME	ARCHITECT-	ENGINE	ER			
					Rico-Argentine Site - OU01	Drilling C	omp	any: Boa	a <b>rt L</b> or	igvea	ır
SITE LOC	ATI	ON		1	3	3		-O UNCON TONS/F	FINED CO	MPRESS	IVE STREN
								TONS/F	T. ²	3 4	4 5
Œ			SAMPLE DISTANCE					PLASTIC LIMIT %		TER ENT %	LIQUIE LIMIT 9
DEPTH(FT) ELEVATION(FT)		핆	STAN		DESCRIPTION OF MATERIAL		5	X		<b>)</b> — — ·	
DEPTH(FT) ELEVATION	NO	Υ		ERY			λ ε Σ ε	10	20 3	30 4	0 50
	SAMPLE NO	SAMPLE TYPE	MPLE	8			UNIT DRY WT LBS /FT 3	8	STANDA		
$\times$	SAI	SA	SAI	RE	SURFACE ELEVATION +8,850.3 Feet	(Continued)	8 g	⊗ 10		30 4	BLOWS/(FT 0 50
	7	SS			Gravelly CLAY (CL) - talus - very moist - medium-high plasticity (possibly CH)	orown -			6		<b>4</b> 2 ⊗
		-	Ш	Ц	mediani-night plasticity (possibly Cri)			· ·	1		7
					9//				1		A.
		D.			Outstand of the				\		7
		PA			Cobble/boulder			1 8	j	1	A
25.0				1	/// ne n				'		1
35.0			T	V	35.0 Clayey GRAVEL with Sand (GC) - extrem	ely dense - wet			1		>5
	8	SS		T	- brown	,					90
			1		Silty GRAVEL with Sand (GM) - extremel	dense - wet -				-	
					brown						1
		PA			823						1
-					Cobble/boulder 6" plus						
40.0					1/2						
	9	SS			Saturated						>5
	_	55	Ш	Ц	<i>2</i> 2						T
				3	(X)						1
					43.0	1.1014.0					
					ALLUVIUM - Well graded SAND with Gra	vel (SVV) – - red-brown					
45.0		PA			Well graded Sandy GRAVEL (GW) - subr	ounded					
45.0					gravel-cobble 5" minus - wet - red-brown						1
											1
					47.0						⊗5
	10	SS			Gravelly CLAY with Sand (CL) - subangui 48.0 subrounded gravel 3" minus - extremely of	ar to					6
	.0	55			red-brown - trace silt	/				7	
					Well graded GRAVEL with Sand, trace Si	t (GW) -					
50.0					subangular to subrounded gravel 3" minu wet - red-brown	s - very dense -					
		PA		1	0						
- 3					0						
			T	T							
	11	SS			0						
			1		á						
55.0					· · · · · · · · · · · · · · · · · · ·						
VV.V	$\left\{ -1\right\}$	PA			Saturated						
					0						
					. 6.						50
	12	SS		-	0.						
			Ш								
					d						
60.0		-		-	// J60.0				+		
					conti	nued					

					LIENT		LOG OF BOR	ING NU	VIBEK ,	SSR2				
A	CC	AC	4			tic Richfield Company	ARCHITECT-	ENGINE	ER					1
, <del>, , , , , , , , , , , , , , , , , , </del>		- = 7	-	11.		-Argentine Site - OU01	Drilling C			art I o	navo	or		
SITE LO	CATI	ON		1	KICO.	Angendine Site - OUU I	ט פווווווע כ	ompa	○ LINCOL	JEINED C	OMPRES	SIVE ST	RENGTH	
,,, ⊏ LU(	OAII	VIV							TONS	T.2	3	4	5	
								1			1	-	1	1
Ê			빙						PLASTIC LIMIT %		ATER		QUID IIT %	
DEPTH(FT) ELEVATION(FT)		m	DISTANCE			DESCRIPTION OF MATERIAL		₋	× -		<b>—</b> — —	LIIV		
DEPTH(FT) ELEVATION	8	TYPE	DIS	K		DEGOTAL FIGHT OF WINTERWAL		> ,	10	20	30	40	50	
ELE,	SAMPLE NO	PLE	PE	OVE				H.		STANE	DARD	+		1
	SAM	SAMPLE	SAMPLE	RECOVE	SURF	FACE ELEVATION +8.850.3 Feet	(Continued)	UNIT DRY WT LBS /FT ³	⊗	PENET 20	FRATION 30		/(FT) 50	
		PA			77.	Silty GRAVEL, with little Sand, trace Clay	(GM) -			T		Ī		
_			Ш		1.7	subrounded gravel 3" minus - wet - red-bro	own - saturated							
			L		1.1.	62.0								
-	13	SS	Н			Poorly graded SAND, trace Clay (SP) - ver wet - red-brown (SP)	ry fine to fine -							
	10	00				A SECTION AND A								
					00000	64.0 Well graded SAND with Gravel, trace Silt (	SW) -			-	+	+		1
65.0					0 0 0	65.0 subrounded gravel 2" minus - wet - red-bro	own							
		PA			1/	Silty GRAVEL with Sand (GM) - subrounded	ed gravel 2"							
					1.70	minus - grades to clayey gravel - wet - red	-nrown							
-			1			67.0 Well graded GRAVEL with Silt and Sand (	GW-GM) -			-	-	-		
	14	SS			. 0	rounded gravel-cobble 4" minus - very den	se - wet -							1 8
- 8			1	Н	0	red-brown - saturated								7
=0.0														1
70.0	-	PA			STATE OF									
		^			. 9								1	
						72.0							1	
			T			Poorly graded, fine SAND (SP) - very dens	se - wet -						51 ⊗	1
	15	SS				red-brown - saturated 73.5							R	
	7 -		1	1	0000	74.0 Well graded SAND with Gravel, trace Silt (	SW) - wet -				6	1	7	
75.0					1/3	red-brown	and antiti						- 1	0
		PA		1	1.7.	Silty GRAVEL with Sand (GM) – rounded g 4" minus - wet - red-brown	i.avei-coppie						Y	
	8				17								X	
			-			77.0	CIAN			-		-		1
	16	ss			1/2/	77.5 Well graded SAND with Gravel, trace Silt ( subrounded gravel 1" minus - wet - red-bro	5/V) -				1			.62 ⊗
				Ш	1.7	Silty GRAVEL with Sand (GM) - subrounded	ed subangular							1
					//	gravel 2" minus - very dense - wet - red br	own							
80.0		B.			17	PO F								
		PA				Well graded SAND, trace Gravel (SW) - we	et - red-brown							
					0 0 0	81.5				-				
			T	T	0	82.0 Well graded GRAVEL, trace fines or Sand subrounded to subangular gravel 2" minus					1			į
	17	SS				\red-brown	/							8
			1	1	0	Well graded GRAVEL with Sand (GW) - surpunded gravel 2" minus - extremely dense								
95.0					6	rounded gravel 2" minus - extremely dense 85.0 red-brown - saturated	s - wet -							
85.0		РА			0	Well graded GRAVEL with Silt and Sand (		1			1			
					0	rounded gravel-cobbles 4" minus - wet - re								
					00000	saturated 87.0								
	10	ss	П		0000	Train gradua armital rate armital trace and	SW) - round 1"							
	18	33			0000	minus gravel - wet - red-brown								
90.0		77.0			0000	90.0								
		7			-	contin	ued					1		
		_						-						
			-	-1				1	M JOB NO 6015	1	1	1	1	1

				(	CLIENT	LOG OF BOR	RING NU	MBER S	SR2	
				1	Atlantic Richfield Company					
A	C	IN	4		PROJECT NAME	ARCHITECT	ENGINE	ER		
					Rico-Argentine Site - OU01	Drilling (	Compa	any: Boa	rt Longye	ar
SITE LO	CATI	ON		-1-				-O- UNCON	INED COMPRES	SSIVE STRENGTI
								TONS/F	2 3	4 5
										1101110
DEPTH(FT) ELEVATION(FT)			링					PLASTIC LIMIT %	WATER CONTENT %	LIQUID LIMIT %
(F)		Ⅱ	STA		DESCRIPTION OF MATERI	AL	5	×		·
DEPTH(FT) ELEVATION	N	<u></u>	ă	ERY			^ ×	10	20 30	40 50
품 급	SAMPLE NO	SAMPLE TYPE	SAMPLE DISTANCE	00			UNIT DRY WT LBS /FT 3	8	STANDARD	L DLOVAGUETY
$\times$	SA		SAI		SURFACE ELEVATION +8,850 3 Feet	(Continued)	I E G	10	PENETRATION 20 30	40 50
		PA			Well graded SAND with Gravel (SW)	- rounded 2" minus				
- 11					graver - wet - red-brown					
			-	-	000					
	19	SS	П		0000					
			μ.	ш	94.0		-			
					Poorly graded fine SAND with Silt (S	P-SM) - few .5"				
95.0					minus gravel - wet - red-brown					
					96.0			4		
-	-	PA			Poorly graded SAND (SP) - few .5" n red-brown	ninus gravel - wet -				
					red brown		11			
-							1 1			
									1 1	
100.0					100.0					
					End of Boring Drilled from 87.0' to 100.0' with no SI	O.T.				
				М	Boring logged by: S. Johnston	21			1 1	
				М	Boring logged by: S. Johnston Casing: 7.0" I.D.					
										1 1
										1 1
										1 1
				N						
				П						
									1 1	
							1 1			
									11 /	
									4 1	
_										- 4
		stra	tific	cati	on lines represent the approximate boundary line				on may be gra	adual.
IORTHING	3	1388	66	6	BORING STARTED 10/7/	11	COM OFF	ICE De	nver	
ASTING		2268	23	6	BORING COMPLETED 10/9/	11 EN	TERED B'	Y SH	HEET NO 4	0F <b>4</b>
ΛL		35.5	104	D	RIG/FOREMAN SONIC	AP	P'D BY	AE	COM JOB NO	7757

A=C		A.		1		Richfield Company	LOG OF BOI			S	SR3			
AEC	U	IV			ROJECT N		ARCHITECT							
				F	Rico-Ar	gentine Site - OU01	Drilling (	Compa	any:	Boa	rt Lo	ngyea	ar	
TE LOCA	TIO	N							-O-1	INCONF ONS/FT	INED CO	MPRESS		ENGTH
ELEVATION(FT)			ANCE						LIN	ASTIC MIT %		ATER		UID IT %
ELEVATION(FT)		SAMPLE TYPE	SAMPLE DISTANCE	VERY		DESCRIPTION OF MATERIAL		UNIT DRY WT LBS /FT 3			20 STAND	+		0
SAMP	5	SAMP	SAMP	RECOVER		E ELEVATION +8,849.3 Feet		UNIT LBS /F		⊗ 10	PENET	RATION		(FT) 0
1		ss	П	1	0.5	CONCRETE pad	1.0011.001	-						
=	+	55	1	Ц	2.5	Well graded GRAVEL with Clay and Sa subangular to subrounded 3" minus gra	and (GW-GC) - avel - wet - brown	H						
	ŀ	РА			0	Well graded GRAVEL with Sand (GW) rounded gravel-cobbles 6" minus - med brown	- angular to lium dense - dry -							
2	: (5	SS			0						²² ⊗			
					7.0	Damp		_	-	-	/-	-		
	F	РА				Gravelly CLAY with Sand (GC) - suban cobble 4" minus - damp - brown	gular gravel -			, ,				
0.0		ss	Т	T	10 0	Well graded GRAVEL with Sand (GW)	- subangular to		4					
			1	1	1111	Gravelly CLAY with Sand (CL) - gravel	to cobbles -							
5.0	F	PA				Gravelly CLAY with Sand (CL) - gravel subangular to subrounded 5" minus - v - damp - brown	ery dense to loose				1	, ,	, ,	
4		SS												, ,
0.0	F	PA												
5		SS				Less cobbles			⊗ 7					
		PΑ			23.0	Clayey GRAVEL with Sand (GC) - grav	vel to cobbles -	H		-	-	1		
5.0						subangular to subrounded 5" minus - v medium dense - damp - brown	ery dense to						1	
6		ss												>5 ⁵ €
	-	PA										7	1	
0.0					8/8\		ntinued					4		

	CLIENT Atlantic Richfield Company	200 01 0011	ING NU	MBER (	SSR3	
AECOM	PROJECT NAME	ARCHITECT-E				
TE LOCATION	Rico-Argentine Site - OU01	Drilling C	omp	any: Bo	art Longye	ar SIVE STRENGTH
TE LOCATION				TONS/F	IFINED COMPRES T. ² 2 3	4 5
ON(FT)	DESCRIPTION OF MATERIAL			PLASTIC LIMIT %	WATER CONTENT %	LIQUID LIMIT %
ELEVATION(FT) SAMPLE NO SAMPLE TYPE SAMPLE DISTANCE	DESCRIPTION OF MATERIAL		UNIT DRY WT LBS/FT ³	10		40 50
SAMPLE NO SAMPLE TYPE SAMPLE DIS	SURFACE ELEVATION +8,849.3 Feet	(Continued)	UNIT D	⊗ 10	STANDARD PENETRATION 20 30	BLOWS/(FT) 40 50
7 88	Clayey GRAVEL with Sand (GC) - gravel to subangular to subrounded 5" minus - very de medium dense - damp - brown	cobbles - ense to		•	26	
PA	Well graded GRAVEL with Sand (GW) - subsubrounded gravel 3" minus - wet - brown	angular to				
5.0 8 SS	Many cobbles					
PA	37.0  Well graded GRAVEL with Clay and Sand (C	GW-GC) -				
9 SS	subangular gravel/cobbles/boulders - extrem very dense - wet - brown	ely dense to				
<b>0.0</b>	*NOTE: 4" clast of fine grain well graded SA damp, dark red (maroon), cohesive. Possibl					,
10 SS	Same from SPT without SW clast					50
<b>5.0</b>	Saturated					
11 SS	Color change to red-brown with cobble/bould	der				Þ50/4
0.0 PA						
12 SS	Many cobbles					
13 SS	Well graded GRAVEL with Sand (GW) - sub- subrounded gravel to cobbles - wet - red-bro	angular to		•		
	Poorly graded SAND (SP) - medium grain - v					
5.0 PA	Well graded GRAVEL with Sand, trace Silt (0 subrounded gravel - cobble 6" minus - wet -	GW) - red-brown				
	Casing advanced with auger to 58.0'					
14 SS	Poorly graded very fine SAND (SP) - wet - re saturated Grades to medium	ed-brown -				⊗ 50
0.0	1011					

				(	LIENT LOG OF BO	ORING N	NUN	ABER S	SR3			
A =		1	4	1	Itlantic Richfield Company							
A	U	JN	1	F	ROJECT NAME ARCHITEC	T-ENGI	NEE	ER				
				1	Rico-Argentine Site - OU01 Drilling	Com	ра	ny: Boa	art Lo	ngye	ar	
ITE LO	CATI	ON						-O-UNCON TONS/F	FINED CO	OMPRES	SIVEST	RENGT
			_					1	2	3	4	5
N(FT)			NCE					PLASTIC LIMIT %		ATER TENT %	LIN	QUID 111 %
ELEVATION(FT)	E NO	SAMPLE TYPE	SAMPLE DISTANCE	/ERY	DESCRIPTION OF MATERIAL	RY WT		10	20	30		<b>∆</b> 50
	SAMPLE NO	SAMPL	SAMPL	RECOVERY	SURFACE ELEVATION +8,849.3 Feet (Continue	UNIT DRY	BS/F	⊗ 10		RATION	BLOWS	
-	0)	0)	0,		Poorly graded very fine SAND (SP) - wet - red-brown -	۵, ا	-	10	20	30	40	50
		PA		1	saturated 61.5 Grades to coarse sand/gravel subrounded-rounded 1" minus gravel	+	+		-	-		-
	15	SS			coarse sand subrounded - very dense - wet - brown  (64.0) Well graded GRAVEL (GW) - subangular to subrounded	E	Ì					
5.0		PA			\-wet - brown - saturated Clayey GRAVEL with Sand (GC) - subangular to subrounded 1" minus - damp - brown with yellow mottling Poorly graded very fine SAND (SP) - wet - brown - saturated							
	16	ss			Grades to medium then coarse sand/gravel Grades fine to coarse in the SPT shoe  67.5 Grades fine to coarse in the SPT shoe  68.5 Well graded SAND with Gravel (SW) - gravel could be	-	+		H	-		55
0.0					broken cobble in shoe - very dense - wet - brown 69.5 Poorly graded SAND (SP) - grades fine to coarse - wet -		1	•				1
0.0		PA			70.5 brown - saturated Well graded GRAVEL with Sand, trace Silt (GW) - subrounded 1" minus gravel - wet - brown Poorly graded SAND (SP) - grades fine to coarse to						1	
	17	SS	T	I	gravel - dense - wet - brown		1				<b>4</b> ² ⊗	L
75.0	T	-			Poorly graded SAND (SP) - grades medium to coarse to		+	•			A	
		PA			Well graded GRAVEL with Sand, trace Silt (GW) - subrounded to rounded 1" minus gravel - wet brown						Y	r
	18	SS		Ш	Well graded SAND with Gravel, trace Silt (SW) - rounded 1 " minus - wet - brown - dense - saturated	F					9	49
30.0		DΛ			0 0 0 d 0 0 0 d 0 0 0 d 0 0 0 d						1	
		PA			Well graded SAND (SP) - medium grain - wet - brown						1	
	19	ss			Well graded GRAVEL with Sand (GW), trace fines – subrounded to rounded gravel - grades 0.5" minus to 2" minus gravel - dense - wet - brown			•		Q	28	
35.0		PA			Well graded SAND with Gravel (SW) - subrounded to rounded gravel .5" minus - wet - brown							
	200	00	T	T	Well graded SAND with Silt and Gravel (SW-SM) - subrounded gravel 2" minus - wet - brown							
	20	SS		Ц					•			
0.0		+3	-	-		300	-		-	-		-
					continued							

				C	LIENT		LOG OF BO	RING NU	MBER	SSR3			
A -		1	4	1	Atlantic Richfield C	ompany							
A	C	JN	1		ROJECT NAME		ARCHITEC	T-ENGINE	EER				
				1	Rico-Argentine Site	e - OU01	Drilling	Comp	any: Bo	oart Lo	ngyea	ar	
SITE LO	CATI	ON		1			_		-O-UNCC	NFINED CO /FT. ² 2	OMPRESS	SIVE STF	RENGTH
									1	2	3	4	5
									PLASTIC	10/	ATER	LIO	QUID
E N			NCE						LIMIT %		TENT %	LIM	IIT %
F	0	YPE	STA	_	DES	CRIPTION OF MATERIA	\L	¥	X		•		
DEPTH(FT) ELEVATION(FT)	L N	쁘	LED	VER				Z °	10	20	+	10 5	50
	SAMPLE NO	SAMPLE TYPE	SAMPLE DISTANCE	RECOVERY	OUDEAGE ELEVATION	-0.040.0 E I	10 "	UNIT DRY WT	8	STAND PENET	ARD RATION	BLOWS	/(FT)
$\triangle$	(y)	PA	S		SURFACE ELEVATION	+8,849 3 Feet	(Continued	1) 5 5	10	20	30	10 5	50
		^	П		Poorly grade	d fine SAND (SP) - wet -	tan-brown						
_	-		D.										
			IT	T									
	21	SS	Ш										
					94.0	d van fina CAND with Cil	A (CD CM)A						
95.0					brown	d very fine SAND with Sil	it (SP-SIVI) - Wet -						
	-	PA			*NOTE: In all		and alone of the						
			П		sand with cla	udes 3" layers of poorly g ly (SP-SC)	raded very fine						
					1.1.197.0	d very fine SAND, trace S	Silt (SP) - wet -	+	-		-		
	22	SS	Ш	Ш	brown	a vory mile or a vo, a doe c	Siii (61 ) Wot						
			Н	4									
100.0		PA			Gravel-cobbl	es 4" minus - subangular	to subrounded						
100.0					End of Boring	9		1					
					Boring logge Casing: 7.0"	d by: S. Johnston							
					Casing. 7.0	Ι.υ.							
									n (t	31			
			Н										
		)	И										
													14
												10 100	1
	The	stra	tific	atio	on lines represent the ap	proximate boundary lines	between soil types	: in situ,	the transi	tion may	be grad	dual,	
NORTHING	G					BORING STARTED	I A	ECOM OFF	105				
		1388	867	7		10/10/1	11			enver			
EASTING		2268	034	4		BORING COMPLETED 10/13/1	11 E	NTERED B <b>SJ</b> I	Ϋ́ I	SHEET NO	<b>4</b> OF	4	
WL		22 0	18/	D		RIG/FOREMAN	A	PP'D BY	n	AECOM JO	B NO	757	
		32.0	VVI			SONIC C	000/	EE	U		601577	3/	

A = A	<b>~</b> 1		Atlantic Richfield Company	OG OF BORING NUMBER SSR4	
AEC	UN	1		RCHITECT-ENGINEER	
			Rico-Argentine Site - OU01	Orilling Company: Boart Longye	ar
ITE LOCAT	ION			-O UNCONFINED COMPRES	SSIVE STREN
ELEVATION(FT)	SAMPLE TYPE	SAMPLE DISTANCE	DESCRIPTION OF MATERIAL	PLASTIC WATER LIMIT % CONTENT %  10 20 30  STANDARD PENETRATION 10 20 30	LIQUI
SAMP	SAME	SAME		S   S   S   S   S   S   S   S   S   S	BLOWS/(F 40 50
	GB		PDF EMBANKMENT FILL (GW) - Not logged  4.0  FILL - Calcines (SM-SP) - sand and silt sized - r	nedium 24	
5.0	GB		dense to loose	medium 24	
0.0	GB				
2					
<b>5.0</b>	GB			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
0.0	GB				
0.0	GB			***	
5.0	GB		25.0  ALLUVIUM - Silty Sandy Cobbly GRAVEL (GW)	,	
5	GB		subrounded to subangular - cobbles to 3.0" - les approximately 5-10% silt - very dark gray 7 5YR extremely dense to dense 25 0-30.0' - Significant sample loss - log/depth approximate - no sample taken	ss than	, '
0.0			Sample 5: Recorded as "51/Driller recalls "refused as "51/Dril	sal"" [8/6"	

					CLIENT Atlantic Richfield Company	LOG OF BOR	ING NU	JMBER SSR4	
		)N	1		PROJECT NAME	ARCHITECT-	ENGINE	EER	
				П	Rico-Argentine Site - OU01	Drilling C	omp	any: Boart Longyear	
TE LO	CATI	ON						UNCONFINED COMPRESSIVE S	STREN
								TONS/FT 2 3 4	5
				Π				PLASTIC WATER	LIQUI
ELEVATION(FT)		1	NCE					LIMIT % CONTENT %	LIMIT
AT10	9	YPE	IST/	<u>≻</u>	DESCRIPTION OF MATERIAL		¥	*	
LEV.	밀	Ę.	LEC	VER			DRY T-3	10 20 30 40	50
7	SAMPLE NO	SAMPLE TYPE	SAMPLE DISTANCE	RECOVERY	SURFACE ELEVATION +8,839 5 Feet	(Continued)	UNIT DRY WT LBS /FT ³	STANDARD  STANDARD  PENETRATION BLOV  10 28/6 30 40	NS/(F
	S	S	S	12	ALLUVIUM - Silty Sandy Cobbly GRAVE		27	10 28/6" 30 40	50
	6	GB	Ш	1	subrounded to subangular - cobbles to 3.	0" - less than			
-			1		approximately 5-10% silt - very dark gray dense and extremely dense above 50.0'	7.5YR 3/1 -			
				1	Becoming dark brown 7.5YR 3/4 with col	bles to 4.0" at			
					30.0' Sample 6: Recorded as "18/Driller recall	e "refueal""			
		GB		1	Sample 6: Recorded as To/Diffiler recall	o Toracai			
0.0					<i>6</i>				
				1	0				
				1	Pagaman atrapa brown 7 EVD 4/0			125/6*	
			T		Becomes strong brown 7 5YR 4/6 Sample 7: Recorded as "25/Driller recall	s "refusal""		\(\text{\infty}\)25/6"	
	7	GB		V	d Comple 7: Necotada de 26/2/mei resam			1	
			1		0.0			8	
.0				1	0			X	
		GB		ı	o con				
				R	Becomes yellowish brown 10YR 4/6 - we depth)	t (Approximate			1
				0.00	a depth)				8
	8	GB		6	ō				1
				4					-
					0.				
0		GB			6				
		GB		1	ō			3	
- /				Ĵ				31	
	_	-	T	1	Significant reduction in max gravel size to	o 1.0" - well			
	9	GB		Ĵ	graded - predom. subrounded with subar yellowish red 5YR 4/6 - wet	ngular -			
				1	yollowish red 511( 4/5 - Wet				
0				3					
		GB		V	å :				
				ij	à				
			T		ALLUVIUM - Gravelly SAND (SW) - sub	angular to well			
	10	GB		ľ	rounded gravels - weak red 2.5YR 4/2 - v	vet			
	H		K		rounded gravels - weak red 2.5YR 4/2 - v Driller reports 5.0' heave, cleanout then 5 (attempting clean out using flapper bit, dr heave) Skipping to 57.0'				
.0					DO 1 DO				
		GB			sample 10: Diffier lost sample on surface	e - reports "all			
					5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				
					5 % d G: 0 h dlo : 0 h			4	
	11	GB			#6 - 4 0 ' 6 # - 4 0 ' 6 # 6				
			1	-	Loose condition may be due to blow-in fr	om ground			
		GB			o ବ୍ୟୁକ୍ତ water				
.0	H			- 1	9°.9.5960.0	nd			+
					conti	nued			
							AEC	OM JOB NO SHEET NO	OF
strati	fication	on line	s re	pre	sent the approximate boundary lines between soil types: in situ, the tra	nsition may be gradual	I VEC	COM JOB NO SHEET NO 2	U

CLIENT LOG OF BORING NUMBER SSR4 **Atlantic Richfield Company AECOM** PROJECT NAME ARCHITECT-ENGINEER Rico-Argentine Site - OU01 **Drilling Company: Boart Longyear** -O-UNCONFINED COMPRESSIVE STRENGTH TONS/FT.² 1 2 3 4 5 SITE LOCATION PLASTIC WATER LIQUID ELEVATION(FT) SAMPLE DISTANCE LIMIT % CONTENT % LIMIT % UNIT DRY WT LBS /FT 3  $-\Delta$ SAMPLE TYPE **DESCRIPTION OF MATERIAL** SAMPLE NO 10 20 30 40 50 STANDARD ⊗ 10 PENETRATION BLOWS/(FT) 20 30 40 50 SURFACE ELEVATION +8,839 5 Feet (Continued) End of Boring
Boring logged by: R. Anderson (0.0-42.0')/Interpreted by
A. Jewell, A. Jewell (42.0-60.0')
Casing: 5.5" I.D. AECOM LOG 60157757.GPJ FS_DATATEMPLATE.GDT 12/13/11 The stratification lines represent the approximate boundary lines between soil types: in situ, the transition may be gradual. BORING STARTED 10/13/11 NORTHING **AECOM OFFICE** Denver 1388644 BORING COMPLETED 10/13/11 EASTING ENTERED BY SJH SHEET NO OF 3 2268005 RIG/FOREMAN PROSONIC 800T/ APP'D BY AECOM JOB NO 60157757 WL

38.0' WD Estimated

A = 04	<b>.</b>		CLIE		Richfield Company	LOG OF BOR			0.	SR5			
AEC	JN	1	PRO	JECT NA	AME	ARCHITECT-							
			Ric	o-Arg	jentine Site - OU01	Drilling C	Compa	any:	Boa	rt Lor	igyea	ır	
SITE LOCAT	ON							-O-U	NCONFI ONS/FT. 1	NED CO			
-10	-		-				4		1	2	3	4	5
E		щ					1 1		STIC		TER		UID
DEPTH(FT) ELEVATION(FT) PLE NO	ш	SAMPLE DISTANCE			DESCRIPTION OF MATERIAL				IT % <b>←</b>		ENT %	_ LIM	IT %
DEPTH(FT) ELEVATION	SAMPLE TYPE	LSIO	ž		DESCRIPTION OF WATERIAL		≥		10 2	20 3	0 4	10 5	50
ELEVAT SAMPLE NO	PLE	PLE	SU SU				A F		-	STANDA			-
SAM	SAM	SAM	E SU	RFACE	ELEVATION +8,832.3 Feet		UNIT DRY WT		⊗ 10 2	PENETE 20 3	RATION 0 4		(FT) 50
			<b>XX</b>	8	PDF EMBANKMENT FILL - Silty Sandy G	RAVEL (GW) -				7			
		П		8	approximately 60% gravel to 2.0" or large and 10% silt fines - predom. subrounded,	r, 30% sand also							
	GB		888	8	subangular to well rounded - brown 7.5YF	R 4/4 - moist							
				×									
250				<b>≪</b> 4.0	FILL - Wasterock - Clayey Sandy GRAVE	L (GC) -			1	,	+		
5.0		1	***	5.0	chunks of highly altered rock forming residuals approximately 40 % gravel, 35%	dual clavev			• €	X			
1	GB			× \	clay - well rounded to subangular gravels	to 2.0" or			1	-			
					larger - various colors, dark reddish brow very dark grayish brown 10YR 3/2 and ye	n 2.5YR 3/4,			1	1			
	GB		XX	8.0	10YR 5/8 - moist				/	-			
					FILL - Process waste? and manmade det Clayey Gravelly SAND (SM) - approximat	oris (cables) -	1	_ /					
10.0		-		英	30% low plastic clay and 20% gravel - sul	pangular to		⊗ 5					
2	GB				subrounded gravel to 2.0" or larger - redd 2.5/1 - medium dense - moist	ish black 10YR /							
		1	34	ä	FILL - Calcines - fine sand and silt sized (	SM) - reddish							
3	ST				purple to purplish black (no munsell) - mo	ist - loose to							
	05	1	1	8	very loose 11.5-13.5' - Attempted shelby tube - no re	covery							
15.0	GB			Ž.	Becoming wet	•		3 ⊗					
4	GB		<b>V</b>	100	Higher silt content from 15.0-17.5'			Ϋ́					
		1		VA.								•	
				8									
	GB			8	Lower silt content, wet and coarser sand 18.0-20.0'	sized from		!					
20.0					10.0-20.0			_ო⊗					
5	GB	$\prod$						W.					
	100	Ш	-	8					~ .				
				1						-			
	GB										*		
25.0												1	50/5"
6	GB	T	221	25.5	COLLUVIUM/POSSIBLE WASTEROCK	Clavey Sandy							ΥŞ
0	GB	Ш	-30	8	Cobbly GRAVEL (GC) - approximately 40	% gravel, 35 %			•	24			30
			1	8	sand and 25% clay - cobbles to 5.0" or la subangular to angular - fragments predon	ger - predom							X.
	GB		18	6	clay moderately plastic - very dark gray 7								
20.0			1/2	200	extremely dense - moist	F0/ /01/1 7/21							
30.0	0-	T	30	30.0	29.5' - Becomes wet - clay fines approx. ' POSSIBLE ALLUVIUM - Clayey Sandy C								
7	GB		3		(GC) - approximately 40% gravel, 35 % s	and and 25%							
	clay - cobbles to 5.0" or larger - predom. angular - fragments predom. greenstone					Ī							
	GB		8	5	moderately plastic - very dark gray 7.5YR	3/1 - extremely				1			,'
			20	2	dense - moist Becomes dark brown 7.5YR 3/2 at 30.0'								E6148
35.0	-	H	1	&L_			-						50/4" 9 — —
					conti	nued							
										1			
		П											

					Atlan		Richfield C	Company	LOG OF	BOKIN	IG NUI	MREK	S	SK5			
AE	CC	<b>)</b> /\	1	F	ROJE	CT NA			ARCHITE			anv:	Boai	rt Lon	gyea	ır	
SITE LO	CATI	ON	-	-	11100	Aig	ontino ont			9		UN	ICONFI NS/FT.	NED COM	/IPRESS	IVE STE	
DEPTH(FT) ELEVATION(FT)	SAMPLE NO	SAMPLE TYPE	SAMPLE DISTANCE	RECOVERY			DES	CRIPTION OF MATERIA	AL		UNIT DRY WT LBS /FT ³	10	T % <del>(</del>	20 3	TER ENT % — — -	LIC LIM — — — — — — — — — — — — — — — — — — —	50
$\times$	SAN	SAN	SAR	REC	SURF	ACE		+8,832.3 Feet	(Continu	ued)	<u> </u>	10		PENETR 20 3	O 4	0	560/4
	8	GB		ij		36.5	34.0' - Becon fines approx.	nes dark yellowish browi 15% (GM)	1 10YR 3/4 - Silt							1	
40.0		GB		- 08 W.Y.	77	37.5 40.0	graded - dark ALLUVIUM - 50% gravel to - well graded	Silty fine SAND with Grac cyellowish brown 10YR Silty Sandy GRAVEL (Go 2.0" or larger, 35% sar - subrounded to angular 4/6 - loose - wet	4/6 - moist 6M) - approximate ad and 15% silt fin	ly es			,				
	9	GB					Silty SAND (	SP) - silt <5% - well grac ' - gravel content approx	led - scattered	ne							
		GB					to medium gr dark yellowis	rained sand with subrour th brown 10YR 3/6 - loos from 40.5-42.0'	nded coarse grain:	S-			1				
45.0	10	GB	T				Gravel conte	nt decreases substantia	ly				¹² ⊗				
	10	OD	H	H		47.0			Tale View				0	•			
50.0		GB	1				wet Driller reports	SP) - silt <5% - weak red s 4.0' heave - pushing ca per bit - may account for	asing and cleaning			8	)				
	11	GB										, y					
		GB					Includes 10-	15% silt fines from 52 0-	54.0' (SM)			1					
55.0	12	GB					Silt content in	ncreasing slightly (SP)									
		GB										1 1 -					
60.0	13	GB	T									.5 ⊗					
61.5					9.3672)	61.5	End of Boring	d by: A. Jewell									
	The	stra	tific	cat	ion line	es re	present the ap	proximate boundary line	s between soil typ	pes: ii	n situ,	the tra	nsitio	n may t	oe grae	dual	
ORTHIN	IG	1388	340	8				BORING STARTED 10/12	/11		OM OFF		-	ver			
ASTING		2268	306	7				BORING COMPLETED 10/13	/11	_	RED B	Y H	-	EET NO	2 OF	2	
ML		15.5	·w	/D				RIG/FOREMAN MINI-SONIC C10	0/D. Cerventes	APP'	D BY	D	AEG	COM JOB	NO <b>60157</b>	757	

				1	LIENT <b>\tlant</b>	tic F	Richfield Company	DRAFT	RING NUM	BER (	SSR-10	)1 (MV	V)	
A=	CC	<b>)</b> /			ROJEC			ARCHITECT	-ENGINEE	R				
				F	Rico -	- Arg	gentine Mine Site	Anderso	on Engi	neering	Compa	any, In	IC.	
TE LOC										-O-UNCON TONS/F	EINED CO	MPRESS	IVE STRE	NGTH
Rico	o-Ar	gen	tiı	1e					4	1	2	3 4	4 5	5
ELEVATION(FT)			SAMPLE DISTANCE							PLASTIC LIMIT %		ATER TENT %	LIQ LIMI	T %
ELEVATION	<u>.</u>	YPE	STS	_			DESCRIPTION OF MATERIAL		¥	X 10	20	30 4		0
. EV	LE P	LE I		MEN					DRY FT.³	10	STAND	1	-	
, "	SAMPLE NO.	SAMPLE TYPE	SAME	) E	SURE	ACE	ELEVATION +8,845.4 Feet	-	UNIT DRY WT.	⊗ 10	PENET	RATION I	BLOWS/(	
	0,		Ť	T	3333	7101	FILL: Well graded gravel, some fine to coar	se		10	23	1	.0 3	
	1	SS	H	4			sand, little silt/clay - dark brown 7.5YR3/2 -					1		
		RB	+				medium dense to dense - moist (FILL: GC) NOTE: Cobbles noted at 1.5 ft		3	1 i		1		
	-	IND		T										1
	2	SS						- 1		•				
		-	+								1			
5.0		RB		-	XXX 5	5.0	Ell I: Wall graded cond come fine to coors			11	- 5			
	3	ss		+			FILL: Well graded sand, some fine to coars gravel, some silt and clay - brown 10YR4/3	-		P	1/			
			Ц	-	<b>***</b> .	7.0	medium dense - moist (FILL: SC)			1	1			
		RB			***		FILL: Well graded gravel, some fine to coar	se		10/				
	4	SS		4	333		sand, little silt and clay - very pale brown 10 - loose - moist (FILL: GM)	YR8/3						
			1				- 10036 - Moist (1 ILL. GIVI)				1			
10.0		RB			‱.	10.0					1	31		
	5	SS	T	Ц	888		FILL (MINE WASTE ROCK): Well graded of	ravel				X		
	0	22	Ш		***		and fine to coarse sand, some sill/clay, with flecks - oxidized colors, grays to red browns			/		1		
		RB	Ĥ				grading to mostly yellow 2.5Y7/6 with oxidiz	ed 🔳		i		1		
			Т	Т			zones - dense to loose- moist (FILL: GM - NWASTE ROCK)	NINE			7		_45 Ø	
	6	SS		1			WASTE ROOK)				Ĭ .			
		RB	1		***						!	1		
15.0	-	,,,,	T	T	888						17			
	7	SS								1	<b>1</b> 0			
		RB	+	-	***			17		11				
		KD	-	-	***			(4)		30				
	8	SS	П		***					1				
		-	1	-							1			
20.0		RB								10	-			
	9	SS			$\times$					T				
			1								1			
									31.		/			
		RB		-		23.0	FILL: Well graded gravel and sand, trace si	It/clay -		1/	-			
					***		yellowish brown 10YR5/4 - loose - moist (F	ILL:		1/				
25.0					***		GW-GM)			5/6"				
	10	SS	1							7 98				
		RB			****					1				
		IVD.		1	***					LE ICH				
	11	SS	I	I		28.0				5/6" 78"				1
		SS	+	+	XXX	28.5	FILL: Poorly graded gravel and sand, little silt/clay, trace organics - 40% fine gravel, 3	8%		5/6"		-	.0	
00.0	,,,0	55				1	fine to coarse sand, 14% to 22% silt/clay -	dark			7 -	- 1		
30.0			-		ELIL		L					- 1-=		-
							continu	leu						
							eximate boundary lines between soil types: in situ, the transit		I AFOO	M JOB NO. <b>6023</b>	1	SHEET NO		DF.

TE LOCATION Rico-Arg	J	II E		NAME			NGINE				
Rico-Arg	J	1	Rico -	Argentine Mine Site	Ande	erson	<b>Engi</b>	neering (	Company	y, Inc.	
(FT)		ne						-O UNCONI TONS/F	FINED COMPI	4	5
ELEVATION(FT)	SAMPLE TYPE SAMPLE DISTANCE	RECOVERY		DESCRIPTION OF MATERIAL			UNIT DRY WT. LBS./FT.³	PLASTIC LIMIT % ————————————————————————————————————	WATEI CONTEN	40 LIN	QUID AIT % ±∆ 50
SAM	SAM	REC	SURFA	ACE ELEVATION +8,845.4 Feet	(Conti	inued)	UNIT LBS.	⊗ 10		ION BLOWS	/(FT) 50
12 5	RB RB	I	3	brown 10YR3/3 - loose - wet (FILL: GM) Organic sandy silt (possible old topsoil), s to coarse sand, trace wood fragments, tra and fibrous plant material - black 10YR2/1 moist (ML-OL) (LOI = 23.1%) Well graded sand and fine to coarse grav silt and clay - very dark grayish brown 2.5 with zones of brown, variable color - extre	ce roots - stiff - al, little Y3/2						7.
35.0 13A S		T.	31	dense - moist (SM)  35.2' to 35.5' Slightly organic clayey sand dark grayish brown 2.5Y3/2 - very dense	- verv			•			5 ⊗
40.0	RB		0000	(SC) Gravel/Cobble/Boulder	wet /						
14 8	SS	H	41	0.7 Boulder					-		-
45.0	RB	I	4	Poorly graded sand, some fine to coarse little silt and clay, with gravel seams - dar brown 10YR3/4 - dense - wet (SM)	gravel c grayish			•	ş Ş	32	, ,
50.0	RB		5	0.0 Poorly graded gravel and fine to coarse s	and.				\$4 \$4		
	RB			trace silt, with seams of less gravel and m sand- reddish brown 5Y4/4 - medium den (GP-GM)	ore				/		
55,0			5	5,0				T.			
	RB		00	Boulder 6.0				Y			
	ss			Poorly graded sand, little fine gravel, trace dark brown 7.5Y3/2 - medium dense - we (SP-SM)				8			
60.0	RB		6	0.0				/			
				conti	nued						

A=(		) <i>N</i>		A	LIENT <b>Atlantic</b> I ROJECT NA	Richfield Company	LOG OF BOR  DRAFT  ARCHITECT-		33K 131 ()
			•			rgentine Mine Site			ineering Company, Inc.
ITE LOC			7			<b>3</b>			UNCONFINED COMPRESSIVE STRENGTH TONS/FT. ²
Rico	-Ar	ger	tir	ne				4	1 2 3 4 5
ELEVATION(FT)	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE	ERY		DESCRIPTION OF MATERIA	AL	UNIT DRY WT. LBSJFT.3	PLASTIC WATER LIQUID LIMIT % CONTENT % LIMIT %
	MPLE	MPLE	MPLE	RECOVERY				NT DI	STANDARD  STANDARD  PENETRATION BLOWS/(FT)
	18	Ś	/S	Z I	SURFACE	ELEVATION +8,845.4 Feet Well graded sand, some fine to coars	(Continued)	5 5	10 20 30 40 50
	18	SS		1	62.0	trace silt - dark brown 7.5Y3/2 - medi wet (SW-SM)	um dense -		
		RB				Poorly graded very fine sand, little sil reddish gray 5YR4/2 - medium dense	t - dark e - wet (SM)		
55.0	19	SS	I	T					(19) (8)
	H							П	1.1
		RB							
70.0					70.0		- 1		125
	20	SS				Fine sand, trace silt - reddish brown to brown 7.5Y4/2 - medium dense - v	vet (SP)		
		RB							
75.0	21	SS	T	I					
							1		
		RB							
0.08	22	SS	I	Ι					<b>•</b> \$6
			_						
		RB							
85.0	23	SS	T	I					\$ 2
			1	+	page 11				
		RB			87.5	Poorly graded fine to medium sand, t some fine to coarse subrounded grav 7.5Y4/2 - medium dense - wet (SP)	race silt, vel - brown		
90.0							continued		

		N.A.			LIENT <b>Atla</b> r	ntic Richfield Company	LOG OF BOR	ING NUN	MBER SS	R-101 (M	W)
AE	CC	N		P	ROJE	CT NAME	ARCHITECT-	ENGINEE	ER		
				F	Rico	- Argentine Mine Site	Anderso	n Engi	neering Co	mpany, I	nc.
SITE LOC				-		•			- UNCONFIN	ED COMPRESS	SIVE STRENG
Rico	o-Ar	ger	ıtiı	1e					TONS/FT. ²	3	4 5
DEFTH(FT) ELEVATION(FT)	).	PE	SAMPLE DISTANCE			DESCRIPTION OF MATER	IAL	VT	PLASTIC LIMIT % ——	WATER CONTENT %	LIQUID LIMIT %
E A	N	<u></u>	ă	띪				₹ .	10 20	30	40 50
	SAMPLE NO.	SAMPLE TYPE	APLE	8				UNIT DRY WT.		STANDARD	DI OMO//ET\
	SAN	SAN	SAN	F.	SUR	FACE ELEVATION +8,845.4 Feet	(Continued)	LB GN	⊗ F 10 20	PENETRATION 30	40 50
						Poorly graded fine to medium sand,	trace silt,			1	
				U		some fine to coarse subrounded gra 7.5Y4/2 - medium dense - wet (SP)	vel - brown			29	
			П	T		7.514/2 - Medidili derise - wet (51 )			•	<b>S</b>	
	24	SS	Ш							1	
			1								
		RB		- 1					i		
95.0				П		95.0				30	
3010			П	I	T	Poorly graded fine to medium sand,	little gravel,		•	6	
	25	SS	Ш		H	little silt and clay - dark brown 10YR	3/3 - dense -		i		1 1
		-	+	Н	11	wet (SM)					
										4	
-		RB			11	ľ			i	1	
		, ,,,			Ш				i	1	
0,00					11	100.0				i	
00,0			Т	T	1	Fine to coarse sand, trace fine grave	el, trace silt -			87	
	26	SS		+		brown 7.5Y4/4 - medium dense to d	ense - wet		<u> </u>	1	
-			1	-		(SP)				)	
			0				(4)		l li	V	
		RB								1	1 1
		IVD								l v	1 1
05.0									l 9 il	,	
05.0	-	-		1		1				:33	
	27	SS		4						18	1 1
	-		Ш	-						1	
										1	
						108.0	oils recipion			1 1	-
		RB			11	Poorly graded very fine sand, some brown 5YR4/3 - loose - wet (SM)	siit - readish			\ /	
	1				11	Stown of the loods wer (e.i.)				λ	$  \cdot  $
10.0	-	_		Т		110.5				23	
	28	SS		Ц	111	Fat clay, high plasticity, laminated (	CH)			4	
	-		1							V	
				1		3				1	
						9				1	
		RB				4				N.	
	1					1					
5.0		_	-	-	111	115.0 Poorly graded fine to very fine sand	little silt -	-		34	+
	29	SS		1		brown 10YR5/4 changing to dark gra	ayish brown			TY	
				_		2.5Y4/2 - dense - wet (SP-SM)				1 1	
								4		1 1	
										1 1	
	1	RB			11					1	
-											
20.0	-	_			11	L		4			
							continued				
									h		
	4			-				1	OM JOB NO. 6023981	SHEET	10. OF

					LIEI		Richfield Company		NG NUN	MBER	SSR-1	01 (MV	/)
A		DN	4						ENGINE	ER			
				L	Ric	o - Ar	gentine Mine Site		ENGINEER  A Engineering Company, Inc  UNCONFINED COMPRESSIV  TONS/FT. ² 3 4  PLASTIC LIMIT % CONTENT %  10 20 30 40  STANDARD PENETRATION BL 20 30 40	C.			
SITE LO	CATI	NC	T	+			g	1		UNC	ONFINED C	OMPRESSI	/E STRENGT
Ric	o-A	rger	nti	ne						TON	S/FT. ²		5
DEPTH(FT) ELEVATION(FT)	SAMPLE NO.	LE TYPE	LE DISTANCE	VERY			DESCRIPTION OF MATERIAL		DRY WT. FT.³	LIMIT 9	% CON	30 40	LIQUID LIMIT % 
	AMP	AMP	AMP	ECC	SII	REACE	ELEVATION +8 845 4 Feet	(Continued)	BS./F		PENE	TRATION B	
	30	SS	T	Ť	T	INFAOL	Poorly graded fine to very fine sand, little brown 10YR5/4 changing to dark grayish	silt -	Ħ	10	4		50
		RB					2.5Y4/2 - dense - wet (SP-SM)						
125,0						125.0		ne Mine Site  DESCRIPTION OF MATERIAL  DESCRIPTION OF MATERIAL  ATION +8,845.4 Feet (Continued)  by graded fine to very fine sand, little silt - n /1.5Y4/2 - dense - wet (ML)  ast dilatancy, non-plastic-non-cohesive, ed to massive bedding, trace fine sand - dark sh gray 5YR5/2 - dense - wet (ML)  by graded fine to very fine sand, trace silt - n /1.5Y4/2 - dense - wet (SP)  by graded fine to wet (SP)  by graded fine to very fine sand, trace fine sand - dark sh gray 5YR5/2 - dense - wet (ML)  continued		36			
	31	SS					Silt and very fine sand - dark reddish broadense - wet (ML)	wn 3/3 -			ICONFINED COMPRESSIVE SINS/FT. 2 3 4  STIC WATER CONTENT %  20 30 40  STANDARD PENETRATION BLOV 20 30 40  10 10 10 10 10 10 10 10 10 10 10 10 10 1		
130,0		RB				130.5						1	
							Silt, fast dilatancy, non-plastic-non-cohes bedded to massive bedding, trace fine sa	sive, and - dark				1	
	32	SS		I			reddish gray 5YR5/2 - dense - wet (ML)	and dank				WATER CONTENT %  20 30 40  STANDARD PENETRATION BLO 20 30 40  40  6/6"	40
135.0		RB											
	-		-	-	Ш	137.0	Argentine Mine Site  DESCRIPTION OF MATERIAL  ACE ELEVATION +8,845.4 Feet (Continued)  Poorty graded fine to very fine sand, little sitt-brown 10YR5/4 changing to dark graytsh brown 2.5Y4/2 - dense - wet (SP-SM)  Silt and very fine sand - dark reddish brown 3/3 - dense - wet (ML)  130.5  Silt, fast dilatancy, non-plastic-non-cohesive, bedded to massive bedding, trace fine sand - dark reddish gray 5YR5/2 - dense - wet (ML)  137.0  Poorty graded fine to very fine sand, trace silt - gravel - very dark graytsh brown 2.5Y - dense - wet (SP-SM)  137.0  Poorty graded fine to very fine sand, trace silt - gravel - very dark graytsh brown 2.5Y - dense - wet (SP-SM)  337.0  Poorty graded fine to very fine sand, trace silt - gravel - very dark graytsh brown 2.5Y - dense - wet (SP-SM)  Gravel information drilling resistance Boulders & weathered stumped sections of Hermosa Sandstone - Colluvium						
	33		Ц	PROJECT NAME Rico - Argentine Mine Site  DESCRIPTION OF MATERIAL  DESCRIPTION OF MATERIAL  DESCRIPTION OF MATERIAL  DESCRIPTION OF MATERIAL  DESCRIPTION HAME READ A Feet  DESCRIPTION OF MATERIAL  DESCRIPTION HAME READ A Feet  DESCRIPTION HAME READ A Feet  DESCRIPTION OF MATERIAL  DESCRIPTION HAME READ A Feet  DESCRIPTION OF MATERIAL  DESCRIPTION OF MATERIAL  DESCRIPTION HAME READ A FEET  DESCRIPTION OF MATERIAL  DESCR	23/6"								
	33A	PROJECT NAME Rico - Argentine Mine Site  Anderson Engineering Cormpany, Inc.  The state of the s	· ·										
140.0	34	ss					wet (SP) Gravel inferred from drilling resistance Boulders & weathered slumped sections	/					
			П	9	S	2						1	
	RUN 1	DB	Ш		1	9							
	1 2			V	1	7							
145.0			+	1	1	3							
				3	)-	6							
	RUN 2	DB											
150.0			1		0				UNCONFINED COMPRESSIV TONS/FT. ² 3 4  PLASTIC WATER LIMIT % CONTENT %  TO 20 30 40  STANDARD PENETRATION BI 10 20 30 40  10 20 30 40  STANDARD PENETRATION BI 10 20 30 40  STANDARD 10 20 30 40  STANDARD 10 20 30 40				
							conti	inued			TIC WATER CONTENT %  20 30 40  STANDARD PENETRATION BL 20 30 40  \$ 40  \$ 50  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$ 666  \$		
The st	ratifica	tion lin	ies i	герге	sent	the appro	ximate boundary lines between soll types: In situ, the tran	nsition may be gradual.	AECO	OM JOB NO	100040	SHEET NO.	OF

Λ-		24	4	1		c Richfield Co	mpany	LOG OF BOF	ring nu	MBER	SSR-1	01 (MW	1)
AE	Cl	JN	4		ROJECT	NAME <b>Argentine Min</b> e	Site	Anderso			Comp	any In	
SITE LO				-		Augentine will	- Oile	Alideiso	Ling	UNCO	NEINED CO	OMPRESSIV	/E STRENGTH
Rice	A-o	rgei	ntir	ne						TONS	2	3 4	5
DEPTH(FT) ELEVATION(FT)	NO.	SAMPLE TYPE	SAMPLE DISTANCE	RY		DESC	RIPTION OF MATERIAL		UNIT DRY WT. LBS./FT.³	PLASTIC LIMIT % ————————————————————————————————————		ATER TENT %	LIQUID LIMIT %
ELE)	SAMPLE NO.	P.E	PLE P	OVE					T DR	1	STAND		-
	SAN	SAN	SAN	REC	SURFA	CE ELEVATION +		(Continued)	) I N I	8 10	PENET 20	RATION BI 30 40	
155.0		RB			808	Boulders & we Hermosa San	athered slumped sections of dstone - Colluvium	ı					
	35	ss		Í	9					•			
160.0		RB			9 16	60,5							3
	36	ss	1			Well graded g silt - dark brov (GW)	ravel and fine to coarse sand /n 7.5YR3/4 - very dense - we	, trace et				•	8
	27	ws			16	53.4							
165.0	37	WS				Possible weat sandstone	nered bedrock - Hermosa for	mation					
	38	ws		-	3/3	166' Hard unfr	actured rock		П				
	m	RB											
169.2	RUN	DB			10	9.2							
						162'. Boring ar Boring advance Three attempt runs no recove high solids be medium bento Piezometer in:	at 169.2 ft. HW casing install- dvanced to 168.2 feet with rol ed to 168.2 ft with tricone roc to obtain NX rock core, all co ery. Tremi grouted borehole value not onite grout to 50 feet. Place nite chips from 40' to 50'. stalled to 37.9 ft. 37 & 38 WS = rotary wash oned.	ler bit. k bit. ore with d					
ODT:		stra	tific	ati	on lines	represent the app	roximate boundary lines betw			105		be gradu	ual.
ORTHING	3	1388	742	.44	16		BORING STARTED 10/15/12		COM OF		Denver		
ASTING		2268	096	.74			BORING COMPLETED 10/24/12		AN	H	SHEET NO	6	6
/L		18/ 1	6	27	0' @ 24 1	ar A D	RIG/FOREMAN	AP	PP'D BY		AECOM JO	B NO.	0

LOG OF BORING NUMBER CLIENT SSR-102/102A **Atlantic Richfield Company** DRAFT A=COM PROJECT NAME ARCHITECT-ENGINEER Anderson Engineering Company, Inc. Rico - Argentine Mine Site UNCONFINED COMPRESSIVE STRENGTH SITE LOCATION TONS/FT,2 **Rico-Argentine** PLASTIC WATER LIQUID ELEVATION(FT) SAMPLE DISTANCE LIMIT % CONTENT % LIMIT % DEPTH(FT)  $\times$ **-** → SAMPLE TYPE DESCRIPTION OF MATERIAL SAMPLE NO. 10 30 50 UNIT DRY LBS./FT.3 STANDARD  $\otimes$ PENETRATION BLOWS/(FT) SURFACE ELEVATION +8,839,0 Feet FILL: Clayey well graded sand, some fine gravel - 26% gravel, 47% sand, 27% fines - brown 10YR5/3 - medium 1 AS dense - moist (FILL: SC) ø¹⁵ 2 SS ISA 5.0 5.0 FILL: Clayey gravelly silt, some fine to coarse sand - dark 3 SS brown 7.5YR3/4 - loose - moist (FILL: ML) IS/ 4 SS 1SA 10.0  $\otimes$ FILL: Clayey gravel, some fine to coarse sand - 89% 5 SS sand and gravel, 11% fines - dark brown 10YR3/3 - loose to medium dense - wet (FILL: GC) **HSA** 6 SS HS/ 15.0 Partly organic gravelly clay (possible buried topsoil), low plasticity - black - medium dense - moist (GC) SS Cobbles and gravel ISA Silt, little coarse sand, little gravel, non-plastic - dark 8 SS brown 10YR3/4 - stiff (CL) **HSA** 20.0 20.0 Lean clay, some fine to coarse gravel, little fine to coarse sand - dark brown 10YR3/4 - stiff (CL) DATATEMPLATE.GDT 9 SS HS/ Well graded gravel, some fine to coarse sand, little silt 109 10 ST and clay - dark grayish brown 10YR4/2 - extremely dense - wet (GC-GM) _____100+ 25.0 S 11 SS 4-8-13.GPJ Cobble HSA Well graded gravel, some fine to coarse sand, little silt AECOM LOG 60239818 RICCI-UPDATED and clay - dark grayish brown 10YR4/2 - medium dense -12 SS wet (GC-GM) 30.0 * Calibrated Penetrometer ... continued AECOM JOB NO. 60239818 SHEET NO. The stratification lines represent the approximate boundary lines between soil types: in situ, the transition may be gradual.

				CLIENT Atlantic Richfield Company	DRAFT	IUVI DVI	VIDER S	SR-102	Z/TUZA	
A		JN	1	PROJECT NAME	ARCHITECT-E	NGINE	ER			
				Rico - Argentine Mine Site	Anderson	Eng	ineering C	ompar	ny, Inc.	
ITE LO			4.				UNCONF TONS/FT		PRESSIVE ST	
Ric	o-Aı	rger	ntin	<u> </u>			1	2 3	4	5
F.			_반				PLASTIC	WAT		QUID
ON(F		ш	JANC	DESCRIPTION OF MATERIAL		_	LIMIT %	CONTE		ΛΙΤ %
DEFINITION (FT)	Š.	₹	DISI	DESCRIPTION OF WATERIAL		× €		20 30		50
	SAMPLE NO.	SAMPLE TYPE	SAMPLE DISTANCE RECOVERY			UNIT DRY WT.	-	STANDAR		1
<b>T</b>	SAN	SAN	SAN	SURFACE ELEVATION +8,839.0 Feet	(Continued)	LBS G	⊗ 10	PENETRA 20 30	ATION BLOWS	/(FT) 50
		RB		Well graded gravel, some fine to coarse sa and clay - dark grayish brown 10YR4/2 - m	and, little silt	1		1		
		"		wet (GC-GM)	edium dense -				×	
				32.5					19/6"	
		SS	H	33.0 Possible FILL: Well graded gravel with silt	and fine to				8	
	13A	SS	111	coarse sand size rock fragments - dark recent (GC-GM)	/					
35.0		RB		Silty fine to coarse sand and gravel - 35%	gravel, 35%					
		HS		sand, 30% fines - dark yellowish brown 10 extremely dense - wet (SM-GM)	TR3/4 -					
	14	38	-	Boulders/cobbles - fine to coarse sand and	gravel					
				fragments in wash cuttings NOTE: Boring SSR-102 ended at 35'. See	Notes below.					
		RB		1.5.1. 55						
		-		39.0						
40,0				Well graded sand, some fine to coarse gra and clay - dark yellowish brown 10YR4/4 -	vel, little silt dense - wet					
. 7.1.7	15	SS		(SM)						
										1
		RB								1
									3	1
45.0									1	
70.0									08/6"	
	16	SS							4	
									3	
									1	
		RB				(			1	
50.0				50.0					3	
30.0	1_			Well graded sand, some fine to coarse gra	vel, little silt				139	
	17	ss	HH	and clay (19.1%) - dark yellowish brown 10	YK4/4 - dense				4	
	-		Ш						1	
									F	
									1	
55.0		RB							<i>y</i>	
JJ.U									/	
									V	
			<b>,</b>	57.0	dark			27		
	18	ss		Poorly graded sand, little silt - 15.9% fines yellowish brown 10YR4/4 - medium dense	- dark - wet (SM)		9	8		
			1		, ,			1		
								1		
60.0		RB		444		+0-	│	+		
				, contin	ueu	_ ^ Ca	iibi ated Penei	ometer		
	1					I AEO	OM IOR NO		EET NO	05
The st	ratifica	dion lin	es rer	esent the approximate boundary lines between soll types: in situ, the transi	tion may be gradual.	AEC	OM JOB NO. 602398	MD SH	IEET NO.	OF 6

ΔΞ	LOCATION Rico-Argen		A	Atlantic Richfield Company	OG OF BORI PRAFT RCHITECT-E		CON TOE TOE	
, ,,,,,		<b>-</b>	•					ineering Company, Inc.
SITE LOG	CATIO	ON		÷	ado 7 agentino mino otto			UNCONFINED COMPRESSIVE STREM
Rice	o-A	rger	ntin	е				TONS/FT. ² 1 2 3 4 5
DEPTH(FT) ELEVATION(FT)	NO.	TYPE	SAMPLE DISTANCE		DESCRIPTION OF MATERIAL		SY WT	PLASTIC WATER LIQUI LIMIT % CONTENT % LIMIT    10 20 30 40 50
	SAMPLE NO.	SAMPLE TYPE	SAMPLE DIS	200	SURFACE ELEVATION +8,839.0 Feet (	Continued)	UNIT DRY WT. LBS./FT.³	STANDARD  STANDARD  PENETRATION BLOWS/(F  10 20 30 40 50
					61.0			
	19	ss	I		Poorly graded fine to coarse sand, little silt and coarse (17.5%-25.4%) - dark yellowish brown 10YR4/4 - dense - wet (SM)	ay - medium		\$ 2
65.0		RB	7		67.0			, , , , , , , , , , , , , , , , , , , ,
	20	SS	-		Silt with very fine sand in thin bedding seams - b 7.5Y4/4 - dense - wet (ML-SM)	rown		
70.0		RB			71.0  Poorly graded fine sand, trace silt - brown 10YR4 medium dense - wet (SP)	4/3 -		1 1 22
75.0	21	SS RB			medium dense - wet (SF)			
	22	ss			77.0     Silt (non-plastic) - brown 7.5Y4/2 - medium dens	e - wet		18
80.0		RB			Poorly graded fine sand, trace silt with bedded so silt and very fine sand - brown 7.5YR4/2 - wet (S	eams of		
	23	ss			81.0  Thickly bedded to laminated silt (non-plastic), sill clay silt, and fine to very fine sand - 79% fines - schanges in color from brown clays to red brown sand, brown 7.5YR4/2 - dense - wet (ML)	slight		41
85.0		RB						
	24	SS			88.5			la1   ≫
				0	Gravel			
90.0	=,	RB			continued		*Cal	librated Penetrometer
The st	ratifica	ition lir	nes re	pre	sent the approximate boundary lines between soil types: in situ, the transition may	/ be gradual.	AEC	OM JOB NO. SHEET NO. 3

				1			ny	LOG OF BORI	NG NUN	MBER S	SR-1	02/102	Α	
A	CC	W						ARCHITECT-E	NGINE	ΞR				
				П	Ric	o - Argentine Mine Site	e	Andersor	Engi	ineering (	Comp	any, Ir	IC.	
SITE LOC	CATIC	ON	Atlantic Richfield Company PROJECT NAME Rico - Argentine Mine Site  DESCRIPTION OF MATERIAL  SURFACE ELEVATION +8,839.0 Feet Silt, with seams of very fine sandy silt - brown 7.5YR4/2 - medium dense - wet (ML)  SS 1 1 1 101.5  SS 1 1 1 101.5  SS 1 1 1 101.5  SIR NORTH STANDARD SILT NORTH SILT NORT				UNCON	FINED C	OMPRESS	IVE STR	ENGTH			
			nti	ne						TONS/F	T. ²	3	4	5
DEFTR(FT)			ACE .							PLASTIC LIMIT %				UID IT %
ELEVATION		믮	STA			DESCRIPT	ION OF MATERIAL		5	×		•	<b></b> ∠	2
- A	N	<u> </u>	503	ER					λ γ.:	10	20	30 4	10 5	50
	APLE	APLE	APL	8					IT DI				DI 011101	(CT)
	SAI	SAI	SA	RE	SU			(Continued)	E S	10	20	30 4	BLOW5/1	50
						Silt, with seams of	ery fine sandy silt - 94.6	% fines -						
					11	brown 7.51R4/2 - m	redium dense - wet (IVIL)				1	-		
	05	00	T								<b>*</b>			
	25	55										8		
	25 3 26 3 27 3 28 3 29 3 30		1	0.7							l i	1		
	PROJECT NAME Rico - Argentine Mine Site  DESCRIPTION OF MATERIAL  DESCRIPTION OF MATERIAL  SURFACE ELEVATION +8,839.0 Feet  Silt, with seams of very fine sandy silt - brown 7.5YR4/2 - medium dense - wet  Silt (non-plastic) with very fine sand an very fine sand seams - 52.5% - 83.2% 7.5YR4/2 - medium dense to dense - wet  RB  RB  RB  RB  Well graded sand, some fine to coarse brown 7.5YR4/2 - dense - wet (SW-SM  Well graded sand, some fine to coarse brown 7.5YR4/2 - dense - wet (SW-SM					1 !	3							
5.0		RB					Mine Site    ARCHITECT-ENGINEER   Anderson Engineering C   Continued   PLASTIC LIMIT %   PLASTIC LIMIT		V					
						96.0					1 i	3		
					1	Silt and fine sand -	51.4% fines - brown 7.5	'R4/2 -			11		\ 44	
	26	92				dense - wet (ML)					-		Ø	
	20	00									1	- 5		
											1	1		
				1							İ	1		
0.0		RB									1	1		
											1			
			1	,		101.5	Louis R	and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t		PLASTIC LIMIT % CONTENT 9  PLASTIC LIMIT % CONTENT 9  10 20 30  STANDARD PENETRATIO 10 20 30				
	27	ss				very fine sand sean	n very line sand and occ ns - 52.5% - 83.2% fines	ATERIAL  Sand and occasional sitty - 83.2% fines - wet (ML)  Sand and occasional sitty - 83.2% fines - brown (ML)  Sand and occasional sitty - 83.2% fines - wet (ML)  Sand and occasional sitty - 83.2% fines - brown (ML)  Sand and occasional sitty - 83.2% fines - brown (ML)  Sand and occasional sitty - 83.2% fines - brown (ML)  Sand and occasional sitty - 83.2% fines - brown (ML)  Sand and occasional sitty - 83.2% fines - brown (ML)						
			11			7.5YR4/2 - medium	ARCHITECT-ENGINEER Anderson Engineering Company, In UNCOMFINED COMPRESSIV TOMS/FT 2 3 4  PLASTIC LIMIT W CONTENT WATER CONTENT WATER LIMIT W CONTENT WATER LIMIT W CONTENT WATER LIMIT W CONTENT WATER LIMIT W CONTENT WATER LIMIT W CONTENT WATER LIMIT W CONTENT WATER LIMIT W CONTENT WATER LIMIT W CONTENT WATER LIMIT W CONTENT WATER LIMIT W CONTENT WATER LIMIT W CONTENT WATER LIMIT W CONTENT WATER LIMIT W CONTENT WATER LIMIT W CONTENT WATER LIMIT W CONTENT WATER LIMIT W CONTENT WATER LIMIT WATER LIMIT WATER LIMIT W CONTENT WATER LIMIT WATER LIMIT WATER LIMIT WATER LIMIT W CONTENT WATER LIMIT							
											X	1		
											X	1		
5.0		RB									1	1		
	1										1			
	-		1	-								130		
	28	ss										1		
			1								- 3			
											1	1		
0.0		Dr.									1	!		
0.0		  KB									1			
											1	i		
			T	T						1 3	5			
	29	SS		1						°				
		-	+1	-							1			1
												1		
15.0		RH							X			1		
V.U		1,0										1		
													45	
			T										¥45	
	30	SS											1	
			1	-									1	
					• •	Well graded sand, s	some fine to coarse grave	el, trace silt -						
20.0		RR			::	brown 7.5YR4/2 - d	ense - wet (SW-SM)							
	-	1	T				continue	ed	* Cal	ibrated Pene	etromete	er		1
							T T COMMING							
The str	ratifica	tion lin	nes	герг	esen	the approximate boundary lines between	een soil types: in situ, the transition	n may be gradual.	AEC	OM JOB NO.	818	SHEET NO	D. 1	OF

					JENT <b>Itlan</b>	tic Richfield Company	LOG OF BORI	NON DE	NDEK	SSR	-102/10	ZA	
AI	CC	W				CT NAME	ARCHITECT-E	NGINE	R				
				R	Rico	- Argentine Mine Site	Anderson	Engi	neeri	ng Con	pany.	nc.	
ITE LOC	CATIC	N					1		○ UI	CONFINED	COMPRES	SIVE STR	RENGTH
Rico	o-Ar	ger	ntii	пе					О ТО	NS/FT. ²	3		5
_									D	TIO	MATER		NIIID.
DEPTR(FT)			SAMPLE DISTANCE						PLAS LIMI		WATER ONTENT %		QUID 11T %
(T)		PE	STAI			DESCRIPTION OF MATERIAL		5	>	<del></del>			A
DEPTH(FT)	E N	E 7	EDI	ER				RY V	1	20	30	40	50
2 1	SAMPLE NO.	SAMPLE TYPE	MPL	RECOVERY				UNIT DRY WT. LBS./FT.³	(8		NDARD NETRATION	LBLOWS	(ET)
	S,	S,	SA	~	SURF	FACE ELEVATION +8,839.0 Feet	(Continued)	5 9	1	20	30	40	50
				1		Well graded sand, some fine to coarse grave brown 7.5YR4/2 - dense - wet (SW-SM)	ei, trace siit -	1 1		-1	1		
	24	00		-		122.0					27	76"	
	31 31A	SS	+	H	ALC:	Well graded sand and gravel, little silt - 42%	gravel, 46%				100	7-	50
	SIA	33		-		sand, 12% fines - brown 7.5YR4/4 - dense to	very dense			1			
						- wet (SM)				/	4		1
25.0		RB								,			1
43.0		I'VD								\ \ \			
				-	1	126.0  Fine to coarse sand, silty very fine sand, and	silty graval		-	1		-	
			T	T		in 3" layers - very dense - wet (SM)	only graver		-				
	32	SS		1						1			
			1							$i \mid$			
						L							
130.0					Ш	130.0				i			
				1	$\bigcirc$	Boulder 131.0				1			
				1	7	Well graded gravel with fine to coarse sand,	some clay -			1			
		RB	М	8	924	gray 10YR5//1 - extremely dense - wet (GC)				j			
				1	8%					[			1 1
				6	100				1 1				
				3	48				y y				
35.0				100	88								
	777	Est.		13	16	136.3							
	-0.1	SS	1	1	ACL	Hermosa altered sandstone - very strong - g	reenish gray		-				
						with pyrite flecks - fine grained - massive be - competent - moderately fractured, joints ar	dding - fresh	18					
		RB				shear clay infilling zone from 141.9'-142.4'	a possibly						
				ч		RQD = 48.7% poor							1 1
140.0						no drilling fluid loss during core run.			1				
	_												
	RUN	DB				444.0							
	K	5,75		10	111	141.9 142.6 Clay with gravel and sand (CH) possible she	ar clay and					+	
		RB	Í	7	111	or joint infilling							
						Sandstone - Solid rock noted during drilling							
145.0	34	ws											
45.0													
			Ш			Fractured zone noted during drilling							
						Solid rock noted during drilling							
		RB				Fractured zone noted during drilling							
						Solid rock noted during drilling							
50.0						150.0							
2210						continue	ed	* Cali	brated	Penetrom	eter	1	
						- Toolining				Ī	1100		
													1 1
								1		IO. 0239818	SHEET	-	1

	_		_		LIENT Atlantic Richfield Company	DRAFT		NUN	/BER	SSR-10	2/102/	Д
AE		<b>)</b> /		PI	ROJECT NAME	ARCHITEC	T-ENGI					
				F	Rico - Argentine Mine Site	Anders	on Er	ngi	neering	Compa	ny, In	C.
Rico			ntir	ne					TONS/F	T."	3 4	VE STRENG
				T							-	
DEPTH(FT) ELEVATION(FT)			SAMPLE DISTANCE	1					PLASTIC LIMIT %	CONT	TER ENT %	LIQUID LIMIT %
DEPTH(FT) ELEVATION	Š.	SAMPLE TYPE	DISTA	ا≾	DESCRIPTION OF MATERIAL		UNIT DRY WT.		X		0 4	<u>△</u> 50
DEP	SAMPLE NO.	. BLE	PLE	OVE			TOR	LBS./FT.3		STANDA	RD	
<	SAN	SAN	SAN	REC	SURFACE ELEVATION +8,839.0 Feet	(Continue			⊗ 10	20 3	0 40	LOWS/(FT) 50
	Tho		orn.		Boring SSR-102 ended at 35 feet due to becoming crooked. Borehole abandoned chips. Offset boring SSR-102A performe of boring SSR-102. Boring SSR-102A bil feet. Advanced SSR-102A to a depth of a combination of mud rotary with 3 7/8" to following with HSA in stages as needed to caving. The HSA were set to 115 feet aft Conventional NX size coring was completed to 142.4 feet with 100% recovery of corecould not be continued in borehole as it was from 115 to 142.4 feet. From 142.4 to 15 rotary with 3 7/8" tricone roller bit was dribedrock.	with bentonite d 5.5 feet south nd drilled to 35 150.0 feet using ricone roller bit to prevent er sampling. ted from 140.0 NX coring vas uncased 0.0 feet mud lled to confirm	\&		the transiti			
		stra	tific	atio	on lines represent the approximate boundary lines be				105		oe grad	ual
ORTHING	9	1388	431	.33			AECOM			nver		
ASTING		2268	226	.37	BORING COMPLETED 11/11/12		ENTERE	DB'	Y H	HEET NO.	6 OF	6
/L		W 1	@	22	B' W.D. RIG/FOREMAN CME-85/Reggie CREGGIE CREG	Castro	APP'D B'	Υ	A	ECOM JOB	NO. <b>602398</b>	18

ΑΞ	C	DΛ	1	Α	lantic Richfield Company	DRAFT			SSR-103 
								neerina (	Company, Inc.
					9			-O-UNCON	FINED COMPRESSIVE STREET
Rico	o-A	rgei	ntir	1e				1	2 3 4 5
F			Ш					PLASTIC	WATER LIQU
-)NC		I	SAMPLE DISTANCE		DESCRIPTION OF MATERIAL			LIMIT %	CONTENT % LIMIT
/ATIC	9 S	ΥPE	DIST	∑	DESCRIPTION OF MATERIAL		¥	10	_
ELEVATION	밀	PLE	PLE	RECOVERY			P DR	- '-	STANDARD
	SAM	SAN	SAN	REC	URFACE ELEVATION +8,909.7 Feet		LBS	⊗ 10	PENETRATION BLOWS/(F 20 30 40 50
			П	T	Silty gravel with sand - dark yellowish brown 10 very stiff (GM)	YR3/4 -			
5.0	1	BS			very still (Givi)				
	1 E 0 1 E 0 1 E 0 1 E	BS							
10.0				T					
			Ш						
	1	BS	Ш	8					
			Ш	18					1 1 1 1
4= 0			Ш	1		ERIAL    A			
15.0			H	T					
			Ш	18					
			Ш	18	A				
	1	BS	Ш	18	17.5 Boulder				+
				4	Sandy clay, little to some gravel, occasional cot	hles and	-		
20.0				T	boulders, rock clasts predominantly fine-grained sandstone - brown 10YR4/3 (CL)	daltered			
			Ш	18					
			Ш	IB					
	1	BS	Ш	IB					
			Ш	16					
		1	Ш						
25.0			1	T					
				16				•	
				Ц					
	1	BS		1					
				8					
30.0				1	A				
					continued				
The -	ntin-	ties "	n I	1	nt the approximate boundary lines between soil types: in situ, the transitlon ma	w ho grad:-!	AFC	OM JOB NO.	9818 SHEET NO 1

ΔΞΟ	M	1	LIENT Atlantic Richfield Company	DRAFT		0011100
ATCOM ELEVATION (FT) WPLE TYPE MPLE DISTANCE COVERY COVERY MPLE DISTANCE COVERY MPLE DISTANCE COVERY MPLE DISTANCE COVERY MPLE DISTANCE COVERY	ROJECT NAME	ARCHITECT-E				
			Rico - Argentine Mine Site	Anderson	Engi	ineering Company, Inc.
		ine				UNCONFINED COMPRESSIVE STRENG TONS/FT. ² 1 2 3 4 5
ELEVATION(FT) PLE NO.	LE TYPE	OVERY	DESCRIPTION OF MATERIAL		UNIT DRY WT: LBS./FT.³	PLASTIC WATER LIQUID LIMIT % CONTENT % LIMIT %  10 20 30 40 50  STANDARD
SAMP	SAMP	RECC	SURFACE ELEVATION +8,909.7 Feet	(Continued)	UNIT DRY LBS./FT.³	<ul> <li>⊗ PENETRATION BLOWS/(FT</li> <li>10 20 30 40 50</li> </ul>
1 E	BS		Sandy clay, little to some gravel, occasion boulders, rock clasts predominantly finesandstone - brown 10YR4/3 (CL)	onal cobbles and grained altered		\$ <del>`</del> −∆
35.0	-	1	35.0 Sandstone boulder			
1	BS	1	37,0			
	BS		Gravel size rock fragments, arkosa, shal sandy silty clay matrix, 25% gravel (GC)	le, sandstone in		
	BS					
	BS		Gravel size rock fragments, arkosa, shal sandy silty clay matrix, 15% gravel (GC)	le, sandstone in		
	BS		Gravel size rock fragments, arkosa, shal sandy silty clay matrix, 30% gravel (GC)	le, sandstone în		
	BS	1	55.0 Sandy silty with 15% rock clasts, deeply (ML)	weathered rock		
60.0			60.0 con	Hayad		

TE LOCA Rico	-				tlantic Richfield Com	прапу	DRAFT		IGINEE	:R				_
			-		ico - Argentine Mine	Site				neering (	Compa	any, Ir	ic.	
Rico-					<u> </u>		-		Ĭ	-O-UNCON TONS/F	FINED CC	MPRESS	IVE STRE	:NC
	-Ar	ger	ntir	ne				_		1	2	3	4 5	
ELEVATION(FT)	NO.	SAMPLE TYPE	SAMPLE DISTANCE	34	DESCR	RIPTION OF MATERIA	<b>NL</b>		UNIT DRY WT. LBS,/FT.³	PLASTIC LIMIT % ————————————————————————————————————	CON	ATER TENT %	LIQL LIMIT	T 9
ELE	SAMPLE NO.	PLE.	PLE	RECOVERY					FDR.	4	STAND	-	+	
	SAN	SAN	SAN	REC	SURFACE ELEVATION +8		(Continue	ed)	LBS	⊗ 10		RATION   30 4	BLOWS/(F 0 50	
				П	Sandy silt with 2	20% sand to gravel siz ne, arkosa, or shale (M	red rock clasts (1/4							
65.0	2	BS			2,5,56,865.		-,			•				
	2	BS												
70.0	-	-	H	1	70.0 Sandy silt with o	gravel, 30% rock clast	s 1/4"-3" in	-			+			
75.0	3	BS			diameter, predc gravel, sandsto black shale clas	ominantly angular to su ne - moist, with 5% de sts. (ML)	ıbangular fine eply weathered							
	3	BS												
30.0		-	H	H	80.0 Sandy silt with o	gravel, stiff, moist, with	10-15% rock	-		-	+	-		
	3	BS			fragments					ND.				
35,0			Н	T										
	3	BS	Ц		86.4		10-11							
0.00		SON		The second second	Hard consistent bedrock 90.0	t drilling in possible ha	ra boulder or							
20.0					CANDON	Sec. C	continued							ĺ

LOG OF BORING NUMBER CLIENT SSR-103 **Atlantic Richfield Company** DRAFT **AECOM** PROJECT NAME ARCHITECT-ENGINEER Anderson Engineering Company, Inc. Rico - Argentine Mine Site - UNCONFINED COMPRESSIVE STRENGTH TONS/FT.2 3 4 5 SITE LOCATION **Rico-Argentine** PLASTIC WATER LIQUID **ELEVATION(FT)** SAMPLE DISTANCE LIMIT % LIMIT % CONTENT % ---UNIT DRY WT. LBS/FT.3 **DESCRIPTION OF MATERIAL** SAMPLE TYPE SAMPLE NO. 10 20 30 40 50 RECOVERY STANDARD PENETRATION BLOWS/(FT) SURFACE ELEVATION +8,909.7 Feet (Continued) Siltstone, dark greenish gray (3/1), closely fractured, hard, moderately strong, slightly weathered. Intensely fractured from 92.0'-95.0' C 1 С 2 95.0 End of boring @ 95.0'. Boring advanced with sonic drilling methods and roller bit rotary wash techniques to 90.0'. Borehole advanced to 95.0' with double barrel NX 60239818 RICG-UPDATED 4-8-13.GPJ FS_DATATEMPLATE.GDT 4/29/13 The stratification lines represent the approximate boundary lines between soil types: in situ, the transition may be gradual. BORING STARTED 10/25/12 AECOM OFFICE NORTHING Denver 1388844.294 AECOM LOG BORING COMPLETED 10/29/12 EASTING ENTERED BY AMH SHEET NO. 2268406.699 APP'D BY AECOM JOB NO. 60239818 RIG/FOREMAN WL AMS Compact Sonic 10-C/Kyle King

W.L. @ 9' W.D.

	Ţ				ENT LOG OF tlantic Richfield Company DRAF		NG NUM	IBER SSF	₹-104	
AEC				F	OJECT NAME ARCHITE	CT-E				
ITE LOCAT	TIC	IAC	_		ico - Argentine Mine Site Ander	son	Engi	neering Col	mpany,	Inc. SSIVE STREN
Rico-/			ıtiı	ne				TONS/FT. ²	3	4 5
N(FT)			ANCE					PLASTIC LIMIT %	WATER CONTENT %	LIQUIE LIMIT 9
ELEVATION(FT)	LE INC.	SAMPLE TYPE	SAMPLE DISTANCE	RECOVERY	DESCRIPTION OF MATERIAL		UNIT DRY WT. LBS./FT.³	10 20	30 TANDARD	40 50
	SAIVIE	SAME	SAME	RECC	SURFACE ELEVATION +8,887.8 Feet		UNIT DRY LBS/FT.³			N BLOWS/(FT
			T	T	Well graded gravel and fine to coarse sand, some silt - brown 7.5YR4/4 - dry (GM)		7-1	•		
1	888	SON			blown 7.3 FR4/4 - dry (GW)					
5.0	2	SON		I						
					8.0					
		00:			Well graded gravel, some fine to coarse sand, some clay, with cobbles and possible small boulders - dark			1		
10,0	3	SON			brown 10YR3/3 - moist (GC)			•,	(	
1310	0		1							
4	1	SON							1	
										1
15.0			ľ						/	
			-		30					
			l.					/		
					17.5 Well graded gravel with clay, 60% gravel (angular to	-	-	4		-
1	1	SON		Ц	subrounded), 25% sand, 15% fines, HCL = strong - 2.5Y4/2 (dark grayish brown) (GW-GC)					
20.0					20.0			-1-		
					Clayey gravel, 35% gravel (angular to subrounded), 30 sand, 25% fines, HCL=strong - 10YR4/3 (brown) (GC)	%		•		
2	2	SON						/		
	-		H	T	Well graded gravel with clay, 65% gravel (angular to					+ +
3	3	SON			subrounded), 25% sand, 10% fines, HCL = strong - 10YR4/4 (Dark Yellowish Brown (GW-GC)			1		
25,0					25.0					
					Clayey gravel, 35% gravel (angular to subrounded), 30 sand, 25% fines, HCL=strong - 10YR4/3 (brown) (GC)	%		7		
4	1	SON								
			Т	1						
	3	SON								
30.0					30.0					
					continued					
					ent the approximate boundary lines between soil types: in situ, the transition may be grad		AFCC	OM JOB NO. 60239818	SHEET	NO. OF

CLIENT LOG OF BORING NUMBER SSR-104 **Atlantic Richfield Company** DRAFT **AECOM** PROJECT NAME ARCHITECT-ENGINEER Anderson Engineering Company, Inc. Rico - Argentine Mine Site -O-UNCONFINED COMPRESSIVE STRENGTH TONS/FT.²
2 3 4 5 SITE LOCATION Rico-Argentine PLASTIC WATER LIQUID ELEVATION(FT) SAMPLE DISTANCE LIMIT % CONTENT % LIMIT %  $\times$ - - - $-\Delta$ DESCRIPTION OF MATERIAL SAMPLE TYPE M SAMPLE NO. 10 30 50 DRY UNIT DRY LBS/FT.3 STANDARD 8 PENETRATION BLOWS/(FT) SURFACE ELEVATION +8,887.8 Feet (Continued) Well graded gravel with clay, 60% gravel (subangular to well rounded), 25% sand, 15% fines, HCL=strong -2.5Y3/3 (dark olilve brown) (GW-GC) (possible mix with 5 SO alluvium) 6 SON 35.0 Well graded gravel with silt, 60% gravel (subangular to well rounded), 30% sand, 10% fines, HCL=strong -2.5Y4/2 (dark grayish brown) (GW-GM) 7 SON 40.0 Clayey gravel, 50% gravel (angular to subrounded), 30% sand, 20% fines, HCL=weak - 10YR4/4 (dark yellowish brown) (GC) scattered oxidized rock 8 SON Clayey gravel, 55% gravel (angular to rounded), 30% 45.0 sand, 25% fines, HCL=strong - 10YR4/2 (dark grayish brown) (GC) 9 SON 10,11 Poorly graded gravel with silt, 70% gravel (subangular to rounded), 20% sand, 10% fines, HCL = strong - 10YR4/3 SON 50.0 (brown) (GP-GM) Clayey gravel, 55% gravel (angular to rounded), 30% sand, 25% fines, HCL=strong - 10YR4/2 (dark grayish DATATEMPLATE.GDT 12 SON brown) (GC) Poorly graded gravel with silt, 70% gravel (subangular to rounded), 20% sand, 10% fines, HCL = strong - 10YR4/3 13 SON (brown) (GP-GM) SH 55.0 Clayey gravel, 55% gravel (angular to rounded), 30% sand, 25% fines, HCL=strong - 10YR4/2 (dark grayish AECOM LOG 60239818 RICO-UPDATED 4-8-13.GPJ 14,15 SON brown) (GC) Poorly graded gravel with clay, 70% ravel (angular to subrounded), 20% sand, 10% fines, HCL=strong -10YR4/3 (brown) (GP-GC) 15 SON 60.0 .... continued AECOM JOB NO. 60239818 SHEET NO. 2 The stratification lines represent the approximate boundary lines between soil types: in situ, the transition may be gradual.

16 S 17 S 65.0 18 S	<b>)</b>	•	1	Atlantic Richfield Company	DRAFT			SS	SR-10	4		
<b>~-</b> '		<i>9</i>	1	l î l	ROJECT NAME RICO - Argentine Mine Site	ARCHITECT-E			7. C	omno	ny In	
ITELOC	:ΔΤΙ/	ואר	-		Alco - Argentine wille Site	Anderson	i ⊏ngi	○ IIN	CONEL	NED COL	MPRESSI	C. VE STRENG
			itir	ıe				ТО	NS/FT.	2	3 4	5
TION(FT)		PE	SAMPLE DISTANCE		DESCRIPTION OF MATERIAL		VT.	PLAS LIMIT	r %		TER ENT %	LIQUID LIMIT %
EVA	Я	ËΤ	EDI				DRY WT.	10	2	20 3	0 40	50
3 = 1	SAMPL	SAMPLE TYPE	SAMPL	RECOV	SURFACE ELEVATION +8,887.8 Feet	(Continued)	UNIT DRY LBS./FT.³	8				BLOWS/(FT) 50
	16	SON			Well graded gravel with clay, 55% gravel (s rounded), 30% sand, 15% fines, HCL=Wea (brown) (GW-GC) some non-hermosa grav	ık - 10YR4/3	115		•			
25.0	17	SON			Poorly graded gravel with clay, 70% ravel (subrounded), 20% sand, 10% fines, HCL=10YR4/3 (brown) (GP-GC)							
0.00	18	SON			Poorly graded gravel with silt, 70% gravel (subrounded), 25% sand, 5% fines, HCL=st 10YR4/2 (dark grayish brown) (GP-GM) (m gravel)	rong -		•				
70.0 80.0	H		-		70.0  Well graded gravel with silt, 45% gravel (su							
	19,20	SON	1	Ц	well rounded), 40% sand, 15% fines, HCL= 10YR4/2 (dark grayish brown) (GW-GM) Well graded gravel with clay, 50% gravel (s							
	20	SON			well rounded), 35% sand, 15% fines, HCL= 10YR3/2 (very dark grayish brown) (GW-G oxidized zones)	N/A -				×-	-	
75.0					75.0  Well graded gravel with clay, 50% gravel (s rounded), 30% sand, 15% fines, HCL=N/A (black) (GW-GC) (contains organics, red sa	- 2.5Y2.5/1						
80.0	21,22,23	SON			Poorly graded gravel with silt, 75% gravel (rounded), 20% sand, 5% fines, HCL=N/A - (dark grayish brown) (GP-GM) (red sandstown) (GP-GM) (red sandstown), 30% sand, 15% fines, HCL=N/A (black) (GW-GC) (contains organics, red sandstown).	10YR3/3 one gravels) ubangular to - 2.5Y2.5/1				×-	-	
	23	SON			Well graded gravel with silt, 60% gravel (surounded), 35% sand, 5% fines, HCL=N/A - (brown) (GW-GM)	bangular to 10YR4/3		•				
35,0	24	SON			Poorly graded gravel with silt, 15% gravel ( well rounded), 30% sand, 15% fines, HCL= 2.5Y2.5/1 (black) (GP-GC) (decreasing org with depth)	None -			>	( <u>-</u>		
	24	SON			89.0 Oxidized/weathered cobbles/boulders (89'-	90')						
90.0	H		1		continu							

A	C	)N	1	1	Αt		tic Richfield Company	LOG OF BORI DRAFT ARCHITECT-E		
			-	11			- Argentine Mine Site			ineering Company, Inc.
SITE LOC	CATI	NC		-				1		UNCONFINED COMPRESSIVE STRENG
Rice	o-A	rger	ıti	ne						TONS/FT. ² 1 3 4 5
DEPTH(FT) ELEVATION(FT)	NO.	TYPE	SAMPLE DISTANCE	ERY			DESCRIPTION OF MATERIAL	L	SY WT	PLASTIC WATER LIQUID LIMIT % CONTENT % LIMIT %
	SAMPLE NO.	SAMPLE TYPE	SAMPLE	RECOVERY	S	URF	FACE ELEVATION +8,887,8 Feet	(Continued)	UNIT DRY WT.	STANDARD  PENETRATION BLOWS/(FT)  10 20 30 40 50
		SON	T	Ť	000		Poorly graded gravel with silt, 15% grawell rounded), 65% sand, 20% fines, F 2.5Y3/2 (very dark grayish brown) (GP	vel (subangular to ICL=weak -		10 20 30 40 30
	25,26	SON		Ī	001		organics, oxídizes brown, decreasing o depth)	organics with		
95.0		SON			000	300	Poorly graded gravel, 70% gravel (sub- subrounded), 25% sand, 5% fines, HC (gradation impacted by drilling red san weathered hermosa gravels)			
	20	SUN		<u></u>	0000	00	96.0 Poorly graded gravel with clay, 65% gr	ravel (angular to		
100.0	27	SON			0,000,000		subrounded), 25% sand, 10% fines, H (GP-GC) mostly hermosa gravels scat shale fine gravels)	CL=strong -		
	28	SON			*		Clayey gravel, 50% gravel (angular to sand, 20% fines, HCL=weak (GC)	subrounded), 30%		
105.0	RUN 2	С			×××××××××××××××××××××××××××××××××××××××	× × × × × × × ×	Siltstone, thinly bedded to laminated, s hard - fair quality, 24 deg inclination, H alterations, 2.5/5GY (grey) (RQD = 70 ^t	ICL=non, pyrite		
110.0	RUN 3	С			× × × × × × × × × × × × × × × × × × ×	× × × × × × × × × × × × × × × × × × ×	Sandstone, thickly bedded, slightly we very hard, moderately to intensely frac inclination, HCL=None, grey (2.5/5GY)	tured, 24 deg		
	RUN 4	С			×××××××	× × × × × × ×	Sandstone, thickly bedded, slightly we very hard, moderately to intensely frac inclination, HCL=None, grey (2.5/5GY)	tured, 24 deg		
15.0 S N/N C					XXXXXXXXXXX	× × × × × × × × × × ×	114.5 Sandstone, thickly bedded, slightly we very hard, moderately to intensely frac inclination, HCL=None, grey (2.5/5GY)			
120.0			+	T	×	XX	119.5	والمرع فينط إنواق		
						- <del></del> \	CC	ontinued		
The str	ratifica	ation lin	es	repr	ese	ent the	e approximate boundary lines between soil types: in situ, the	transition may be gradual.	AEC	COM JOB NO. 60239818 SHEET NO. 4

CLIENT LOG OF BORING NUMBER SSR-104 **Atlantic Richfield Company** DRAFT **AECOM** PROJECT NAME ARCHITECT-ENGINEER Rico - Argentine Mine Site Anderson Engineering Company, Inc. - UNCONFINED COMPRESSIVE STRENGTH TONS/FT.²
1 2 3 4 5 SITE LOCATION **Rico-Argentine** PLASTIC WATER LIQUID **ELEVATION(FT)** SAMPLE DISTANCE LIMIT % CONTENT % LIMIT % UNIT DRY WT. LBS./FT.3  $\times$  – - - -SAMPLE TYPE DESCRIPTION OF MATERIAL SAMPLE NO. 10 30 STANDARD ⊗ 10 PENETRATION BLOWS/(FT) SURFACE ELEVATION +8,887.8 Feet (Continued) Sandstone, thickly bedded, slightly weathered, hard to very hard, moderately to intensely fractured, 24 deg inclination, HCL=None, grey (2.5/5GY) (RQD = 44%) RUN 6 С 124.5 End of boring @ 124.5'. Boring advanced to 104 ft using sonic equipment. Boring advanced to 124.5' with NX core barrel. 60239818 RICO-UPDATED 4-8-13.GPJ FS_DATATEMPLATE.GDT 4/29/13 The stratification lines represent the approximate boundary lines between soil types: in situ, the transition may be gradual. BORING STARTED 10/30/12 AECOM OFFICE NORTHING Denver 1388530.939 BORING COMPLETED 11/4/12 **EASTING** ENTERED BY AMH SHEET NO. 2268370.687 APP'D BY AECOM JOB NO. 60239818 RIG/FOREMAN WL

AMS Compact Sonic 10-C/Kyle King

None Observed



	FF FF FF FF FF FF FF FF FF FF FF FF FF				BORING LOG	PAGE 1 OF 1	7	
PROJECT PROJECT	NO 57				BORING TP 5	GOORDINATES OR LOCATION.		
LOG <b>GED</b> B					SURFACE ELEVATION:	GWL DEPTH COUNTERED)  GWL DEPTH (STATIC)		
DRILLING	BACKH			HOLE	N/4 FLUID ATIA	DATE STARTED: 10-15-07	7	
METHOD:		CIZE		DIAME	TER: USED FROM	AGSTO BGS	+	
SCREEN T			N/M	+	FROM_	TOBGS		
SAMPLE TYPE AND	SAMPLE DEPTH INTERVAL	BLOW COUNT	RECOVERY LENGTH	PROFILE	DESCRIPTION	WELL CONSTRUCTION SUMMARY		
05 0.8 1.0 , 1 4.5 2.0 2.5 3.0 3.5					Error and sourced a callent to the callent tolling selling selling	brown on corp - sonely will the work of the (2" - 6" of) 70% sock with yell contains to 12% a 20-30% north		
35 1.6 90 95 50 55 60 65 70 75 70 75 70 75 70 75 70 75 70 70 70 70 70 70 70 70 70 70					Brown and, selly as well calling of the calling of the call and some			
7,0 11	1/\					NO WATER ENCOUN	re	
TD-	<u> </u>	9'	51P	R	notes ackfilled + Co			

.

	A KAGA	1				BORING L	OG	PAGE OF		
PROJ	ECTIN	10	Cico	C0	Pande	BORING TP- 8		DINATES CATION: Lov		
LOGG CHEC	KED BY	€5 (:				SURFACE ELEVATION:	GWL C	LOCATION:  (L DEPTH O NO (ENCOUNTERED)  (STATIC)		
DRILL METH	ING P	MOR	MIL			TA FLUID NA		STARTED 10-14-08		
CASIN	IG TYP EN TYF	E AND	SIZE	1	10	FRO	OMA.G.	STOBG.S		
DEPTH()	SAMPLE TYPE AND NUMBER	SAMPLE DEPTH MTERVAL	BLOWCOUNT	RECOVERY LENGTH.	PROFILE	DESCRIP	TION	WELL CONSTRUCTION SUMMARY		
10 15 20						Brown sonly Silt and catalles meny lenses of balo	sine tailings	Rock.		
2.5						Brown sendy 31+ la	1000 1 25%	Boutelins (212" & at this loger lace still Got Rock		
5.5 6.3 65 7.3	_				**					
		_				No	OTES			
	TD=_	6.	U	4	1)-	Test Pit Back	filled +	Compacted		
				X	- 5	Sample Collec	cted, C	omposit of Meterial		

	AME F					BOR	RING LOG		PAGE OF
PROJU	ECTNO	ME R	Logi	CO	ndo	DOMESTICS IN	2 13	COORDINA OR LOCATI	ON JOY
l ogg	ED BY. KED BY	KC.				SURFACE ELEVATION:		W- 4 2 C - C - C - C - C - C - C - C - C - C	
DRILL	NG E	ckh	201		HOLE	TER USED	NA		TED 10-14-08 PLETED: 10-14-08
CASIN	GTYP	est EAND	SIZE		N		# FROM	A.G.S.TO	B.G \$
SCRE	ENTYP	E AND	SIZE*		14		FROM	70	8 G S
DEPTH!	SAMPLE TYPE AND NUMBER	SAMPLE DEPTH INTERVAL	BLOWGOUNT	RECOVERY LENGTH	* PROFILE	4			WELL CONSTRUCTION SUMMARY
0.5	449,					Grand Surface Gray Samely J	It only gra		
7.8						Brown silty .	sond and go	muel	
2.2						Gron Somethy 511	to and around	Just .	
3,5						Red amelone	tollings		1
4.0									
5,1									
6.0									
1,0									
7.5									
-					1				1
			di.						
					(p				
	-						NOTE	S	
	TD=	8.	J						A = 1 Tracked
				1	Tos	+ Pit t	Jack Hi	led +	compacted
				, J	0	N/a A a	lloated	Anno	compacted posit of Waterial
	1_			X	24	white co	nechell	: Dringe	DOIT OF NUMERIAL

	MIX					BORING LOG		PAGEOF		
PROJECT ORILL METHORASIN	ECT NO ED BY KED BY ING FO OD: T G TYPI	WA-	KH4	T	HOLE	BORING NUMBER: TP-14 SURFACE ELEVATION PIT FLUID NIA TER. USED. FROM FROM	COORDINATE OR LOCATION GWL DEPTH GWL DEPTH DATE STARTE OATE COMPL A G S TO	THO NO VENCOUNTERED		
DEPTH	SAMPLE TYPE AND NUMBER	SAMPLE DEPTH INTERVAL	BLOWCOUNT	RECOVERY LENGTH (%)	PROFILE	DESCRIPTION		WELL CONSTRUCTION SUMMARY		
0.5 110 11.5 2.0 3.0 3.5 5.5 6.0 7.5 8.0	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s					Red to dark red to (colored) mixed we stained rach stain colored) fork me tailings (2"-14") searchy to sully and moist		no water		
	TD=	8	0	/		NOTES NO WATER				
						BACKFILLED &	Comf	MUSD		
_						In come to be a familiar on the	10	ed Composit oblider		

PROJECT NAME KICO COPER PROJECT NO SE LOUS POR LOGGED BY CACHECKED BY DRILLING BOCK hold by METHOD TO AND SIZE. SCREEN TYPE AND SIZE HA	BORING LOG  BORING TP-/S  SURFACE ELEVATION,  OLE NA FLUID IAMETER: USED. NA  FROM_ FROM_ FROM_	PAGE OF  COORDINATES OR LOCATION  GWL DEPTH D (ENCOUNTERED) GWL DEPTH (STATIC)  DATE STARTED /0-/3-03  DATE COMPLETED: , 0-/3-08  AG,S TO BG,S
SAMPLE TYPE AND NUMBER SAMPLE DEPTH INTERVAL BLOW COUNT RECOVERY LENGTH (%)	DESCRIPTION	WELL CONSTRUCTION SUMMARY
9.5 7.0 7.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0	Luy with some Ley rock (2"- 25-40% not diff	7
	DackHilled + Co	semilas port profiles

	# ANIXE					BORING LOG		PAGE OF
OGG	ED BY	Sack	No.E			BORING NUMBER: TP-17 SURFACE ELEVATION: ALA FLUID	GOORDINA OR LOCAT GIVL DEPT DATE STAI	TTES
ASIN	OD G TYP	E AND E AND	SIZE:	+	DIAME	TER USED	DATE COM	PLETED. /2-/3-08
DEPTH	SAMPLE TYPE AND NUMBER	SAMPLE DEPTH INTERVAL	BLOWCOUNT	RECOVERY LENGTH (%)	PROFILE	DESCRIPTION		WELL CONSTRUCTION SUMMARY
505050505050	9.7	XX		Øÿn		port with prove all gravel with prove took content 25%.  Very took party clay organic material Brown selly clay come large next most	(2" to )	no rock soil mount
			*.					
	TD=		1)	10	of Pol	Bock Filed &	cled, Com	ported superial

18-17

₩_{Asixis}.

			00 (	SPO	nds	BORING TP. 18	COORDINAT	574
	DBY			*		SURFACE ELEVATION:		(STATIC)
DEILLIN	ig Va	ckh	00				DATESTART	ED /0-14-03
METHO	TYPE	est_	1		DIAME	TER PLUID NO	100 K 1 Kin 100 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K 2 K	BGS.
	N TYPE			194-		N FRO	***	
ax En	SAMPLE TYPE AND NUMBER	NTERAL	SLOW COUNT	RECOVERY LENGTH (%)	PROFILE	* DESCRIPT	<b>O</b> N	WELL CONSTRUCTION SUMMAR
0.5 1.5 2.5 3.6 3.5 4.5 5.5 6.5 6.5						Brown Clayer 5.11  gravel and Co  (3" - >12" B  mist	with ble.	
7.9							*	
	TD=_	7			1	ost Pit Backfill	OTES	nted

	ANEX	ĝ.				BORING	LOG		PAGE OF	
PROJ LOGO CHEC DRILL METI- CASII	ECT NO ECT NO ECT NO KED BY KED BY KED TYP EN TYP	A CLE FAND	Lo	415	HOLE	ETER. JUSEU	19 1/A FROM_	COORDINATES OR LOCATION  GWL DEPTH O (AD (ENCOUNTERED))  GWL DEPTH (STATIC)  DATE STARTED /0 - /3 - 0 T  CATE COMPLETED /0 - /3 - 0 T  A G.S TO B G S  TO B G S		
DEPTH()	SAMPLE TYPE AND NUMBER	SAMPLE DEPTH INTERVAL	SCOWCOUNT	RECOVERY LENGTH.	ui ii  DESCR	PIION		WELL CONSTRUC	TION SUMMARY	
8,5 1.0 1.5 2.0 2.5 3.2 4,5 5.0 5.8 7.0	24.4					Brown Clauses  and roots (2)  as - 307a - makes  Concrete founds	-3 \ n	Note:	refund	
	TD=		111	est	PA X	Eadle filled of	NOTES ~ Cor lede	npocker d, Con	coest of	Muteris

PROJECT NAME 2 10 CD BORING NUMBER TP 20 COORDINATES OR LOCATION.  LOGGED BY AD SURFACE GWL DEPTH D FLUID NA DATE STATED 10 - 14 - 0 8 DATE COMPLETED 10 - 14 - 0		WINDS					BORING LOG		PAGEOF
SURFACE CHECKED BY CHECKED BY DRILLING TALLERO METHOD LIFT TH DRILLING TALLERO METHOD LIFT TH DRILLING TALLERO METHOD LIFT TH DRILLING TALLERO METHOD LIFT TH DRILLING TALLERO METHOD LIFT TH DRILLING TALLERO METHOD LIFT TH DRILLING TALLERO METHOD LIFT TH DRILLING TALLERO METHOD LIFT TH DRILLING TALLERO METHOD LIFT TH DRILLING TALLERO METHOD LIFT TH DRILLING TALLERO METHOD LIFT TH DATE COMPLETED 10-14-08  BGS  FROM AGS TO BGS  FROM TO BGS  BGS  BGS  DESCRIPTION  WELL CONSTRUCTION SUMMAR  WELL CONSTRUCTION SUMMAR  GRAVE  GRAVE LAWREY  TO BGS  BGS  BGS  DESCRIPTION  WELL CONSTRUCTION SUMMAR  GRAVE  GRAVE  GRAVE  GRAVE  AGS TO BGS  BGS  FROM TO BGS  GRAVE  GRAVE  AGS TO BGS  BGS  FROM TO BGS  GRAVE  GRAVE  AGS TO BGS  BGS  FROM TO BGS  GRAVE  GRAVE  AGS TO BGS  BGS  FROM TO BGS  GRAVE  GRAVE  AGS TO BGS  BGS  FROM TO BGS  GRAVE  GRAVE  AGS TO BGS  BGS  FROM TO BGS  GRAVE  AGS TO BGS  BGS  FROM TO BGS  GRAVE  GRAVE  AGS TO BGS  BGS  FROM TO BGS  GRAVE  GRAVE  AGS TO BGS  BGS  FROM TO BGS  GRAVE  AGS TO BGS  BGS  GRAVE  AGS TO BGS  BGS  FROM TO BGS  BGS  GRAVE  AGS TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  BGS  FROM TO BGS  FROM TO BGS  FROM TO BGS  FROM TO BGS  FROM TO BGS  FROM TO BGS  FROM TO BGS  FROM TO BGS  FROM TO BGS  FROM TO BGS  FROM TO BGS  FROM TO BGS  FROM TO BGS  FROM TO BGS  FROM TO BGS  FROM TO BGS  FROM TO BGS  FROM TO BGS  FROM TO BGS  FROM TO BGS  FROM TO BGS  FROM TO BGS  FROM T	PROJ	ECT NA	AME &	ift.	Co p	ands	BORING TP. 70	100000000000000000000000000000000000000	TES
DRILLING PACKED HOLE HA FLUID NA DATE STARTED 10-14-08  METHOD LOST THE DIAMETER USED NA DATE COMPLETED 10-14-08  CASING TYPE AND SIZE  SCREEN TYPE AND SIZE  SCREEN TYPE AND SIZE  LEGIS OF THE STARTED 10-14-08  DATE STARTED 10-14-08  DATE COMPLETED 10-14-08  DATE COMPLET	Logg	EDBY	KE	A-Irv	13-1	8 10,500	SURFACE	GWLDEFT	
DATE COMPLETED 10-14-08  CASING TYPE AND SIZE SCREEN TYPE AND SIZE  THE HEAD TO BGS.  DESCRIPTION  DESCRIPTION  WELL CONSTRUCTION SUMMAR  DESCRIPTION  WELL CONSTRUCTION SUMMAR  DESCRIPTION  DESCRIPTION  DESCRIPTION  WELL CONSTRUCTION SUMMAR  OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF S				No.		HOLE	1	_	
DESCRIPTION  DESCRIPTION  DESCRIPTION  WELL CONSTRUCTION SUMMARE  O.S  A.S  O.S  A.S  O.S  A.S  O.S  A.S  O.S  O	METH	00.1	est 1	1+		DIAM	ETER USED INT	DATE COMP	LETED 10-14-08
DESCRIPTION  WELL CONSTRUCTION SUMMAR  O.S.  DESCRIPTION  WELL CONSTRUCTION SUMMAR  WELL CONSTRUCTION SUMMAR  O.S.  DESCRIPTION  WELL CONSTRUCTION SUMMAR  O.S.  O	(4) (5)				N	A			
8 20 20 20 20 20 20 20 20 20 20 20 20 20	DEPTH (	SAMPLE TYPE AND NUMBER	SAMPLE DEPTH INTERVAL	BLOWCOUNT	RECOVERY LENGTH		DESCRIPTION		WELL CONSTRUCTION SUMMAR
	1.5 2.0 2.5 3.0 2.5 8.0 8.5 5.0 5.5 6.0						Brown clayey 5 it.  gravel and some (6"-12" 2)  Rans of Rad Colorne tally 3"	Colles 5-10% Roca	

PEO 19	ANDCF ECT NA	ME /	2001	0 6	0	BORING	COGREINAT	PAGE / OF /
ROJE	ECTNO	57	600	15 A	מענפ	HUMBER TP 21	OR LOCATIO	181
	ED BY					SURFACE ELEVATION		(ENCOUNTERED)
	ING 18					AUA FLUID AUM		EU 10 - 13 - 23
	IG TYP	_			) A	FROM	AGSTO	EG\$ NA
CRE	EN TYP	E AND				FROM	70	863
DEPTH()	SAMPLE TYPE AND NUMBER	SAMPLE DEPTH INTERVAL	BLOWCOUNT	RECOVERY LENGTH (%)	PROFILE	DESCRIPTION		WELL CONSTRUCTION SUMMARY
u.5	0	X				Arrive tity same and	gravel	
2.5	2.0 (a)	$\Leftrightarrow$			-	While and yellow course	had such	
713	3.0	$\sim$			-	Mine Walle (3-100)	nock 60%.	rock
1.5						White and yellow course prine waste (3-40) Brann Silvy and with and cabbles	10-15 3	unt
ý. #	6	$\vee$						
5 5	(3)	$\wedge$						
7 3	7.0			1-00		10-22		No water encount
7,5						TO I		no water mesus
			1 7					
								6
								prod
			-7	-		NOTES		
	TD=	ŧ)	1	est P	爬	makfilled + Co	infacti	ed
	1	,		70	116	1 . 1 . 1 . 1	174	cosit 2 Materia

	# J				BORING LOG	PAGE _/_ OF _/_
	NAME: Æ				10 20	OGRDINATES R LOCATION:
	NO ST &		POA	202	SURFACE GV	VL DEPTH (ENCOUNTERED) VL DEPTH (STATIC)
HECKED		1 -	_	[inal m		VI. DEPTH (STATIC) TE STARTED: (0 · /3 · 0 %
RILLING ETHOD=	Back	Loc		DIAME	TER: USED: NAT DA	TE COMPLETED: 10-13-08
	YPE AND				FROM	A.G.S.TOB.G.S.
CREENT	YPE AND	SIZE:	Μ	14	FROM	TOB.G.S. /V *-
SAMPLE TYPE AND	NUMBER SAMPLE DEPTH INTERVAL	BLOW COUNT	RECOVERY LENGTH	PROFILE	DESCRIPTION	WELL CONSTRUCTION SUMMARY
5 1	X				Crushed stone and soldific	1
5	0	·		-	Bud Sandy towning 1 - cala	v. €
1 10	20/2				orange silly sand with	e plante.
1 · · · · · · · · · · · · · · · · · · ·	IX				gravel - Calling	Saye rocks, could need a surprise - influence - influe
ТО	)= <u>5</u>	10		1)	Steel pipe in trong	ch, running N/S

Ī

SEH 2004 TP-2004A

10:00	AM	EXC	AVATE	P.	-2004A
0'-	10.5		AT 430	B RUB	BTIRE
(	OLLU	num,	CLAY	EY SA	ND AND
6	RAVEL	, DAR	+ AE	如15件	GRAY
(3	(/i), £	OULDE	S to	2,0	
	NOIST,	MODE	RATELY	( Aten	ISE
£	OULDE F	es An	JA LO	BBLES	
		DED T		-UL AR	1
E	STIMPIN	= 30%	>2"		

TP-2004B

TP.	-2004	B			9
0-	7,0	con	UVIUM		
4	CLAYE	Y SA	NO AN	1) 6-R	AVEZ
	BROWN	(4/3)	Mois	T, MO	9
	DENSE	, LOW	J PLAS	T1517	Y
	FINES	, Ba	LAER	STO	0,
	COBBL	ES A	ND BO	ULA	RS
4)	ANGUL	AR,	TO 51	BANG	MAR
	ESTIM	ATE :	0%	> 2"	

TP-2004C

TP'-	2004		1			
0	- 9.01	CO	LLUVI	JM		
0	AYEY.	SAND	AND	SPAVE	2	
AF	KK B	ROMN	(3/2),	5416H	TLY	
		FINES				
F	AST IC	ITY, I	BOULD	ERS T	3.0	
E	STIMAT	E 15	80 > 2	1 0	BBLES	
7	N601	AR TO	DSUA	ANGU	CAR	

TP-2004E

TP-200	FE		-	
N. OF	POND	IS IN	CALC	NE
TAILING	2		ž -	
0-9	of Ca	Icine	Tail	trys
9:0-IZ	O' RI	VER C	DEBLE	1
WAT	RO	8,0	7	

TP-2004F

-	TI	- 20	204 F	7		
		EAST	OF	Acroll	18	
	0-	0,5'	FILL	_	11	
i	75-	12.0	CALC	INE.	TAILIN	lis
				*	7.1.7.10	

TP-20046

FAST OF POND 18

0-0.5 FILL

0.9-12.0 Calcine tailings

TA	- 2004	H				TP-200	74
P	1 ANC	4/17				200	7
	-40	FIL	4		8		
1 1	4.0'-	12.01	Calci	ne to	ling		
-	SWA	11.01					
	-20	04 I	- 1			TP-200	41
		D4 I				TP-200	41
Tf	2-12	OF I ONDI	ialcin	e Tai	lings	T.P-200	41

4

3 %

1. 7

	TEST PIT LOG	TEST PIT#
PROJECT: F	ico St. Louis Ponds  DATE: ZI SEP 11  LOGGED BY: ACJ	TP2061-1
WEATHER:	SUNNY 65° F EXCAVATION METHOD: CAT 330	C LONG STIC
LOCATION:	POND 13 POND PERINCETER, IN POND, MEAR SE	CORINCI



SOIL TYPE	SOIL DESCRIPTION
1	PRECIPITATED SOCIAS, MIXED W/ OTHER SOIL, 5 YR 5/3 DARR REDDISH BROWN, SAWDY SICT W/ SCATTERED & RAVEL UP TO 1/2" LOW PLASTICITY, SAND MOST LY FINE, SOLIDS IN SOME CASES FORM V. SOFT SAND-SIZED PARTICLES, V. SOFT
2	CALCINES, SILTY SAND, WET, NON-PLAST, TENAS TO AVAIL - DARK REPOISH PURPLE, NON-PLAST, TENAS TO AVAIL - DARK REPOISH PURPLE, NON-PLAST, TENAS TO AVAIL - DARK REPOISH PURPLE, NON-PLAST, THEN SET
3	HARD AS WATER RELEASED, WHOODERS TO 12"  CLAYEY, SANDY GRAVEL W/ COBBLES AND BOULDERS TO 12"  CLAYEY, SANDY GRAVEL W/ COBBLES AND BOULDERS, 3/106Y, DARK GREENISH  EST., 10-15% COBBLES AND BOULDERS, 3/106Y, DARK GREENISH  EST., ANGULAR TO SUBROUNDED, GRAVEL AND COBBLES 640D  GRAY, ANGULAR TO SUBROUNDED, HARD TO V. HARD

	TEST PIT LOG	TEST PIT #
PROJECT: Rico St. Lou	uis Ponds	DATE: ZI SEP 11 TP2011-2
WEATHER: SUNNY LOCATION: POND	65° SIB, IN POND NEAR	DECANT, SOUTHWEST CORNER



SOIL TYPE	MIXED WITH OTHER SOIL SOIL DESCRIPTION
2000	PRELIPITATED SOLIDS, MOIST, SYR 3/3 PARK REDDISH BROWN, SANDY SILT W/ SCATTERED GRAVES, LOW PLASTICITY, SAND
	DARK REDDISH PURPLE, & NON-ALASTIC, TEND TO LIQUERY AND DARK REDDISH PURPLE, & NON-ALASTIC, TEND TO LIQUERY AND DARK REDDISH PURPLE, & NON-ALASTIC, TEND TO LIQUERY AND DARK REDDISH PURPLED IN PIT, THEN SET HARD, V. LOOSE, WHEN SATURATIED
60	GANDY SILT W/ SLATTERED GRAVEL WET, 3/1086 DARK GREEN IS H GRAY,
	LOW PLASTICITY, GRAVEL ANGULAR.

-	TEST F	PIT LOG			TEST PIT #
PROJECT: Rico S		AND Y	DATE: LOGGED BY:		TP2011-2
	UNNY, 65°	EXCAVATION AR MIDDLE	ON METHOD:	CAT 308	C CR MIVIE



SOIL TYPE	SOIL DESCRIPTION
<b>@</b> (3)	SOIL DESCRIPTION  FIND BANK MENT FILL, SEE ABOVE FOR MOISTURE AND COLOR, BOULDERS TO 18" SUB ANGULAR TO ROUNDED, ~3% BOULDERS ~10% COBBLES, ~40% GRAVEL, ~30% SAND. GRAVEL AND 5.00BLES MOD HARD - V. HARD,

	TEST PIT LOG		TEST PIT #
PROJECT: F	Rico St. Louis Ponds	DATE: ZZ SEP I LOGGED BY: ACJ	7P2D11-8
WEATHER: LOCATION:	SUNNY, 60° F POUR 16/17 DIKE	EXCAVATION METHOD:	



SOIL TYPE	SOIL DESCRIPTION OXIDIZED
<b>P</b> 19	EMBANKMENT FILL, LENGES OF WASTEROCK, SANOY GRAVEL/ WAR AVELLY SAND WI CLAY AND BOULDERS TO 15", LENGES
39	DE CALCINE, VISIBLE STRATIFICATION, OVER ALL COLOR SYR 3/2 DARK REDAISH BROWN, SUB AND LAR TO ANGULAR, ~3% BOULDE 10% COBBLES, 30% GRAV, 35% SAND, ~20% FINES (SILT WISOME CLAY) SMOST GRAVEL + COBBLES MOD HARD TO HARD W/ EXCEPTION OF OXIDITED WASTROCK, WHICH BREAKS EASILY (SOFT),
	WASTER ROCK OR (PROBABLE), MOIST, NUMEROUS LIVE AND DEAD ROOTS, LEVE TO 3/8" IN DIAM, LENSES OF HIGHLY WEATHERED ROCK (SEE PHOTO, (SILTY CLAY), POCK PEN! ZIA KY ZOMM TIP, IIZ ID MM TID., MOD TO HIGH PLASTICITY
UB -	ALLUVIUM?, SILTY SAND, MOIST, V. SIMILAR TO MAT (5), TP ZOII-7,

TEST P	LOG TEST PIT #
PROJECT: Rico St. Louis Ponds NO:	DATE: 22 SEP 11  LOGGED BY: ACJ  TP ZOII - 10
WEATHER: LOCATION: DUE EAST OF SOIL	EXCAVATION METHOD:



SOIL TYPE	SOIL DESCRIPTION
165	
<b>6</b>	CALCINES, MOIST, SIMILAR TO CALCINES AROUND SITE, SILTY SAND/SANDY SILT, NON-PLASTIC, DK REDDISH PURPLE.
	BELOW 11.0, APPEARS TO BE INITED WY SUBRINGULTER AND GRAVER
(Z)	CONTENT IN SOME LAYERS  CONTENT IN SOME LAYERS  PROBABLE ALL UVIUM, INFILTRATED W/ CALCINES, BOULDERS, PUT  PROBABLE ALL UVIUM, INFILTRATED W/ CALCINES, BOULDERS,  UP TO 24", SUBROUNDED TO ADUNDED, 43% BOULDERS,

	TEST PIT LOG	TEST PIT#
PROJECT: I	Rico St. Louis Ponds  DATE: 22 SEPTI LOGGED BY: ACJ	TP 2011-12
WEATHER:	SUMMY, 65° EXCAVATION METHOD:	-
LOCATION:	NORTH STACKED REPOSITORY, SE CORNER	



SOIL TYPE

SOIL DESCRIPTION

FILL (LIKELY), REGRADED COLLUMN / LANDSLIDE DEBRIS, MOIST
TO WET, STRATIFIED, BOULDERS TO 36", IDYR 3/3. LV. DARK
BROWN), EST, S. 10% BOULDERS, 10-15% COBBLES, 20% GRAVEL, ZD% SAND
35% CLAY FINES, MODERATE LY PLASTIC FINES, GRAVEL +

COBBLES MOD HARD TO HARD, AFFEAR TO BE HERMOSA-DEALVED.

		TEST PIT LOG			TEST PIT #
PROJECT: Ricc	St. Louis Ponds		LO	DATE: ZZ SEP	TF 2011-13
ALEATIES /	JORTH STAC BOREH	KED REPOS. N	EXCAVATION M	ETHOD:	SWER (WEST)
- 20	40 PM End Tim		٥,		
EAST	End lin	LENGTH (FEET)	WE	NO NO	TES/SAMPLES
0	5	10	15	20 VIE NO A	SEEPA SE STED
5					HOLE CAVE
10				0-	15 JUST LIDE TO MPLETTE TER COMPLETTE
15					
20	TUSAL ONG	IANT OBSTACLE, OF	E-C III	W. C.	OT MOVE
SOIL TYPE			SOIL DESCRIPTIO	S SOLMARIL	Y MOIST NO
(1) (33)	SAME MA WET SEE	TL AS TP 201	1-12, min		

	TEST PIT LOG	4	TEST PIT #
PROJECT: I	Rico St. Louis Ponds	DATE: ZZ SEP I LOGGED BY: ACJ	TP2011-14
WEATHER: LOCATION:	NORTH STACKED REPOS BETWEEN LOCATIONS	ATION METHOD: EN Z NORTH BOR	EHOLE

Start Time: _____ End Time: ____ Note: EAST WEST NOTES/SAMPLES (HOE SIDE) LENGTH (FEET) SAZ 4755 EL: _ 15 10 5 DEPTH (FEET) SIGNIFICANT DEBRIS 10 V STARNUG @ 9' BRICKS, I-BEAMS GIRDERS, CABLES 15 REPUBAL @ REACH 20

SOIL TYPE

SOIL DESCRIPTION

SAME MATERIAL AS TP ZOII-13, MATERIAL (35), EXCEPT FOR DEBRIS AS NOTED

	TEST P	IT LOG	TEST PIT #
PROJECT: Rico St. L	ouis Ponds	DATE: 7 LOGGED BY: A	23 SEP 11 TA 2011-15
WEATHER: SUNNY	. 40° f	EXCAVATION METHOD:	
LOCATION: FLOO	DIKE, N. END O	学 毎年   1	

Start Time: 9:55 AM End Time: 18:35 AM Note: EAST WEST NOTES/SAMPLES F (200) EL: HEE SIAE LENGTH (FEET) 20 15 10 15 GAL BUCKET MAT 36 HYPALON ! Z 5 GAL BUCKEYS MAT 37 # 5 (3) I S GALL DUCKETS MAT 38* * - -3" (APPROX) ONLY 10 7 SIGNIFICANT SEEP AGE 38 IN SPAT 15 20

SOIL TYPE	SOIL DESCRIPTION
(3) (3) (3)	PILL, EANY GRAVEL, PROCESSED MATL, MAX 517E = 36, 260° GRAVEL,  AON SAND, 10% SILT FINES, ANGULAR TO ROUNDED.  FILL, CLAYEY SANDY GRAVEL, MAX 517E = 211 ~ 35% GRAVEL,  FILL, CLAYEY SANDY GRAVEL, MAX 517E = 211 ~ 35% GRAVEL,  TO SUB ANGULAR WI SOME ANGULAR PARTICLES, I GLEY 7.5 NYBLACK)  TO SUB ANGULAR WI SOME ANGULAR PARTICLES, I GLEY 7.5 NYBLACK)
9	FILL, CLARY SANDY GRAVEL, BOULDERS TO 36", ~ 15% BOULDERS, ~ 15% CLAY
(1)	

		TEST P	IT LOG				TEST PIT #
PROJECT: Ric	o St. Louis Pon	ds			DATE: 23 OGGED BY: ACJ		TP201-16
WFATHER:	MIDALE O	THEAT L			METHOD:		
Start Time: 10	:45AM End 1	ime:	Note:				
_5W	$\overline{}$	LENGTH (F	FEET)	(He	OF SIDE)	NOTES	/SAMPLES
0	5	10		15			
5		(3) (6)	THIN LA		MATE SO		
10		1	6 1 60	MIX.	W/ MAH AD		
15							
SOIL TYPE		(A)		DESCRIPTION	PAGE INTO PIL		
①							

	TEST PIT LOG	TEST PIT#
PROJECT: I	Rico St. Louis Ponds  DATE: 23 SEP II LOGGED BY: ACJ	TP2011-17
WEATHER: LOCATION:	SOUTH STACKED REPOS, N. END	



SOIL TYPE	SOIL DESCRIPTION
	COLLUVIUM OR POSSIBLE FILL  ACLAYEY SAMBY GRAVEL, MOIST, 10 YR 3/3 BARK BROWN, BOULDERS TO  ACLAYEY SAMBY GRAVEL, MOIST, 10 YR 3/3 BARK BROWN, BOULDERS TO  18", ~3 % BOULDERS, ~ 80% COBBLES, ~ 30% GRAVEL, ~ 30% SANO,  18", ~3 % BOULDERS, ~ 80% COBBLES, PREDOM. SUB ANGULAR  ** 25% CLAY FINES, E'NES MOD PLASTIC, PREDOM. SUB ANGULAR  TO ANGULAR GRAVEL/COBBLES, WITH SCATTERED SUBROUNIESS  TO ANGULAR GRAVEL/COBBLES, WITH SCATTERED SUBROUNIESS  MOD, HARA TO HARD ROCK, PROBABLE HERMOSA FIN DERIVERS. BELOW  NO, HARA TO HARD ROCK, PROBABLE HERMOSA FIN DERIVERS. BELOW  NO, ALTERNATING LAYERS OF HIGHER COBBLE AND BOULDER  CONTENT (SEE PHOTOS).

TEST PIT LOG						
PROJECT: RIC	co St. Louis Ponds			DATE: 23 5 6 PH LOGGED BY: ACL		
WEATHER: OCATION:	65° F SUN	NY KED NE POS, M	EXCAVATION METHO	DD:		
	-74 Au = 171-	e: 7.105 Am Note:				
EAST EL:	7,30 Am End Time	LENGTH (FEET)	WEST HOE SID	NOTE:	5/SAMPLES	
0	7					
10		PLASTICATION OF CABLES	E (WACTIVE)	2 5 0-Z MA	GAL BUDG	
20			SUL SECONSTION			
SOIL TYPE			SOIL DESCRIPTION		4	
	COLLUVIUM/ EXCEPT FO IN PHOTOS	R PEBRIS AS NO IS DISTATED	OVER FILL, TED, ZA" MAX BRICK	SAME AS BOULDER S	MAT 43,	

TEST PIT LOG						TEST PIT#	
PROJECT: Rico St. Louis Ponds NO:				DATE: 23 SEP 11 LOGGED BY: ACJ		TP2011-19	
WEATHER: LOCATION:	SOUTH STACKED	RESPITORY,	SOUTH	SIDE,	ON ROAD		
Start Time:	2,35 M End Time: 3	ISPM Note:					



SOIL TYPE	SOIL DESCRIPTION					
1	Free,					

## **CPT Logs**



Site: RICO ST LUIS DRYING CEED@ineer: C. SANCHEZ

Sounding: CPT-ADFR-01

Date: 11/1/2011 01:59





Site: RICO ST LUIS DRYING CEED§ineer: C. SANCHEZ

Sounding: CPT-ADFR-01A Date: 11/1/2011 02:32





**AECI** 

Site: RICO ST LUIS DRYING CEED@ineer: C. SANCHEZ

Sounding: CPT-ADFR-02

Date: 11/1/2011 12:53





Avg. Interval: 0.328 (ft)

Site: RICO ST LUIS DRYING CEED§ineer: C. SANCHEZ

Sounding: CPT-ADFR-02A

Date: 11/1/2011 01:28





Avg. Interval: 0.656 (ft)

Site: RICO ST LUIS DRYING CEEDSineer: C. SANCHEZ

Sounding: CPT-01

Date: 10/31/2011 03:51





Site: RICO ST LUIS DRYING CEED@ineer: C. SANCHEZ

Sounding: CPT-02

Date: 10/31/2011 02:50





**AECI** 

Site: RICO ST LUIS DRYING CEED@ineer: C. SANCHEZ

Sounding: CPT-03

Date: 10/31/2011 03:24





Site: RICO ST LUIS DRYING CEED@ineer: C. SANCHEZ

Sounding: CPT-04

Date: 11/1/2011 08:03





**AECI** 

Avg. Interval: 0,656 (ft)

Site: RICO ST LUIS DRYING CEEDSineer: C. SANCHEZ

Sounding: CPT-05

Date: 11/1/2011 07:42





Avg. Interval: 0.656 (ft)

Site: RICO ST LUIS DRYING CEED@ineer: C. SANCHEZ

Sounding: CPT-06 Date: 10/31/2011 01:31



SBT: Soil Behavior Type (Robertson 1990)

**Refraction Microtremor Logs** 











ReMi PROFILES



## Appendix B

IDF Solids - Laboratory Results















## **Appendix C**

**Stability Analysis Results** 







Title: RICO Interim Drying Facility Dike Stability

Comments:

Method: Morgenstern-Price Grid and Radius Failure Surface

